Wuhan HT2670 Insulation Resistance Tester

I. Introduction

HT2670 Insulation Resistance Tester consists of medium and large scale integrated circuit with high output power and high short-circuit current value features. The output voltage is up to four grades. The built-in battery served as power supply become high DC voltage by DC/DC transformation, which goes from E pole to L pole via the object being tested. By this way, it produces a current from pole E to pole L, which converted by I/V and computed by the divider. The value of insulation resistance will display on the LCD finally

II.Features

1. High output power, strong load ability, and strong anti-interference ability. The shell body is made of aldural/high-strength aluminum alloy, equipped with potential protection ring and fourth-order active low pass filter; it can play an effective role in shielding external power frequency and strong electromagnetic field. For the measurement of capacitive specimen, since the short-circuit current is greater than 1.6 mA , it's easy to rise the test voltage to the rating of output voltage. For the measurement of low resistance, it will not affect the test by using scaling method.
2. The meter is battery powered and the measure range is converted automatically. The easy-toread panel and LCD display make measurement very convenient and fast.
3. The output short-circuit current of the meter can be measured immediately without estimation.

III. Parameters

Operating Conditions	Temperature	$0^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
	Relative humidity	$\leq 85 \%$
Output voltage grades	$100 \mathrm{~V}, \quad 250 \mathrm{~V}, \quad 500 \mathrm{~V}, \quad 1000 \mathrm{~V}$	
Measuring range	$0 \sim 19990 \mathrm{M} \Omega$	
Resolution	$0.01 \mathrm{M} \Omega, \quad 0.1 \mathrm{M} \Omega, \quad 1.0 \mathrm{M} \Omega, \quad 10.0 \mathrm{M} \Omega$	
Relative error	$0 \sim 2000 \mathrm{M} \Omega \leq 5 \% \pm 2 \mathrm{~d}$ $2000 \mathrm{M} \Omega \sim 19990 \mathrm{M} \Omega \leq 10 \% \pm 2 \mathrm{~d}$	
Voltage/Load	$1000 \mathrm{~V} / 20 \mathrm{M} \Omega$	
Voltage drop	Approximately 10%	
Short-circuit current	$>1.6 \mathrm{~mA}$	
DC	$8 \times 1.5 \mathrm{~V}(\mathrm{AA}, \quad$ R6) battery	
AC	$220 \mathrm{~V} / 50 \mathrm{~Hz}$	
Power dissipation	quiescent power dissipation $\leq 160 \mathrm{~mW} ;$ Maximum power $\leq 2.5 \mathrm{~W}$	
Dimension	$235 \times 200 \times 135 \mathrm{~mm}^{3}$	
Weight	$<1.4 \mathrm{~kg}$	

IV. Accessories

