

Ozone Data & Conversion Tables

Solutions Gas

Plasma &

LIQUOZON[®] Dissolved Ozone Delivery Subsystem] taka

-4

LIQUOZON

Ozone Data & Conversion Tables

Ozone is an environmentally friendly alternative to many chemical processes. It has a high redox potential, can be generated at the point of use and is easily converted back to oxygen. Since ozone is an unstable molecule, ozone has to be generated on-site. A common technique is electrical discharge, sometimes also called silent electrical discharge. By applying high-frequency alternating voltage to oxygen gas, the oxygen molecules (O_2) will be split into atoms. Ozone (O_3) is formed by recombination of atomic and molecular oxygen.

Typical Applications

Semiconductor Industry

- Ozone Gas
 - TEOS / Ozone CVD
 - $Ta_2O_5 CVD$
 - ALD
- Dissolved Ozone
 - Photoresist strip
 - Wafer cleaning
 - Contamination removal
 - Surface conditioning
 - Oxide growth

Physical Properties of Ozone and Oxygen

Property	Ozone (O ₃)	Oxygen (O ₂)
Color	Gas: blue colored	Gas: colorless
	Dissolved in water: purple blue in concentration > 20 ppm	Dissolved in water: light blue
Molecular weight, g/mol	48	32
Boiling Point, °C (K)	-112 (161.3)	-183 (90)
Density, kg/m ³	2.144	1.429
Solubility in water at 0 °C	0.64	0.049
Electrochemical potential, V	2.08 (Hydroxyl radical OH° 2.80)	1.23

Typical O₃ Half Life Time as a Function of Temperature

Gaseous		Dissolved In Water (pH 7)	
half life time	at Temp	half life time	at Temp
~ 3 months	-50 °C	~ 30 minutes	15 ⁰C
~ 18 days	-35 °C	~ 20 minutes	20 °C
~ 8 days	-25 °C	~ 15 minutes	25 °C
~ 3 days	20 °C	~ 12 minutes	30 °C
~1.5 hours	120 °C	~ 8 minutes	35 °C
~1.5 seconds	250 °C		

These values are based on thermal composition, no wall effects or other catalytic effects are considered.

Solubility of Ozone in Fluids

Henry's Law: The maximum achievable balancing concentration of gas in fluids:

$$C_{Liquid} = C_{Gas} \times B_{(Temperature)} \times P_{gas}$$

with

C_{Liquid}: dissolved concentration in liquid

C_{Gas}: gas conc.

ß: Bunsen coefficient (solubility), temperature dependent

P_{Gas}: gas pressure

Conversion Table For ${\rm O_3}$ Gas Phase Concentration in ${\rm O_2}$

Weight - %	Volume - %	Concentration	Productivity at 1 I/min Gas Flow
1 09/	0.7%	14.2 a/m3	0 % a/br
2.0%	0.7%	28.7 g/m ³	0.00 g/m 1 72 g/br
3.0%	2.0%	13.3 g/m ³	2.60 g/hr
3.5%	2.3%	50.0 g/m ³	2.00 g/m
4.0%	2.3%	57.9 g/m ³	3.47 g/hr
4.0%	2.170	72.6 g/m ³	3.47 g/m
5.0%	3.4 /0	72.0 g/m ²	4.30 g/m
6.0%	4.1%	100.0 g/m ³	5.24 g/m
0.0%	4.7%	100.0 g/m ²	6.00 g/m
7.0%	4.8%	102.3 g/m ³	6.14 g/nr
8.0%	5.5%	117.3 g/m ³	7.04 g/nr
9.0%	6.2%	132.5 g/m ³	7.95 g/hr
10.0%	6.9%	147.7 g/m ³	8.86 g/hr
10.2%	7.0%	150.0 g/m³	9.00 g/hr
11.0%	7.6%	163.0 g/m³	9.78 g/hr
12.0%	8.3%	178.5 g/m³	10.71 g/hr
13.0%	9.1%	194.0 g/m³	11.64 g/hr
13.4%	9.3%	200.0 g/m ³	12.00 g/hr
14.0%	9.8%	209.7 g/m ³	12.58 g/hr
15.0%	10.5%	225.4 g/m ³	13.52 g/hr
16.0%	11.3%	241.3 g/m³	14.48 g/hr
16.5%	11.7%	250.0 g/m³	15.00 g/hr
17.0%	12.0%	257.3 g/m ³	15.44 g/hr
18.0%	12.8%	273.4 g/m ³	16.40 g/hr
19.0%	13.5%	289.6 g/m³	17.38 g/hr
19.6%	14.0%	300.0 g/m ³	18.00 g/hr
20.0%	14.3%	305.9 g/m ³	18.36 g/hr
21.0%	15.1%	322.4 g/m ³	19.34 <u>g</u> /hr
22.0%	15.8%	338.9 g/m³	20.34 g/hr
22.7%	16.3%	350.0 g/m ³	21.00 g/hr

1 ppm O_3 equals approximately 2 mg/m³O₃

All data in the table related to standard conditions:

 $T_{_0}:$ 0 °C (273.15 K = 32 °F), $P_{_0}:$ 101325 Pa (1.013 bar = 14.7 psi = 760 mm Hg), absolute

Conversion for Other Conditions:

conc $O_{3}(T_{1}, P_{1}) = conc O_{3}(T_{0}, P_{0}) \times \frac{273.15}{T_{1}} \times \frac{P_{1}}{101325}$, with T_{1} in [K], P_{1} in [Pa]

Solubility of Ozone in Fluids (cont'd)

Ozone Solubility in Water as a Function of Temperature

Safety

Ozone is a highly toxic, oxidizing gas. It can be assimilated via inhalation, skin and eyes. For detailed information, reference the Ozone Material Safety Data Sheet available from Genium Publishing Corporation.

Material Compatibility of Ozone

Material	$O_{_3}$ Gas	O ₃ Dissolved	Comment
Metals			Metals can suffer severe corrosion
Stainless Steel	+	-	
Silver, Copper- Alloy	-	-	Silver and other metals can destroy ozone catalytically
Inorganic Oxides			
Glass, Quartz	+	+	
Alumina Oxide	+	-	
Fe-, Cu, Mn-Oxide	-	-	Efficient catalyst
Organics			Most organics are severely attacked
PTFE, PFA	+	+	
PVDF, PVC	-	(+)	PVDF/PVC are attacked in gas phase, can be used in drain lines
PP, PE	-	-	
Kalrez [®] , Chemraz [®]	+	+	Seals

Note: Plus sign (+) equals compatible; Minus sign (-) equals incompatible

MKS Instruments, Inc. Global Headquarters

2 Tech Drive. Suite 201 Andover, MA 01810 Tel: 978.645.5500 800.227.8766 (in USA) Tel: 978.284.4000 Tel: Web: www.mksinst.com

MKS Instruments, Inc. Solutions

90 Industrial Way Wilmington, MA 01887

MKS Instruments Deutschland GmbH Plasma & Reactive Gas Plasma & Reactive Gas **Solutions**

Wattstr. 11-13 13355 Berlin, Germany Tel: +49.30.464.0030

MKS products provided subject to the US Export Regulations. Diversion or transfer contrary to US law is prohibited. Specifications are subject to change without notice. mksinst[™] is a trademark and LIQUOZON[®] is a registered trademark of MKS Instruments, Inc. Kalrez® is a registered trademark of E.I. Dupont Co., Inc. Chemraz® is a registered trademark of Greene, Tweed & Co., Kulpsville, PA.

OzoneConversion - 11/15 © 2004 MKS Instruments, Inc. All rights reserved.