

IT-M3900C

Bidirectional Programmable DC Power Supply

IT-M3900C **Bidirectional Programmable DC Power Supply**

IT-M3900 series integrates the features of a DC power supply, a bi-directional power supply, a source and load system, and a regenerative electronic load in one. It keeps the advantages of high power density design of M series, power up to 6kw, current up to 510A, and voltage up to 1500V within one 1U unit, effectively reducing the equipment occupation space and cabinet time, wide-range models could meet different test requirements while matching with multi-functional, high energy-saving, high-safety, and high-stability product design, let the customer be confident to face a variety of complex testing, improving the products competition ability.

IT-M3900C is a regenerative bidirectional programmable DC power supply, it is not only a stand-alone bidirectional DC power supply but also can be used as a regenerative electronic load, to absorb the consumed energy and feedback cleanly to the grid. The high-efficiency energy feedback efficiency not only saves electricity consumption and heat dissipation costs but also does not interfere with the operation of the power grid. IT-M3900C provides high accuracy output measurement, high reliability, high safety, and abundant measurement functions. Which makes IT-M3900 meet customers' high accuracy automatic ATE testing requirements, while extensively used in aspects of automotive electronics, new energy vehicles, photovoltaic energy storage, intelligent industrial equipment, battery simulation, etc.

FEATURE

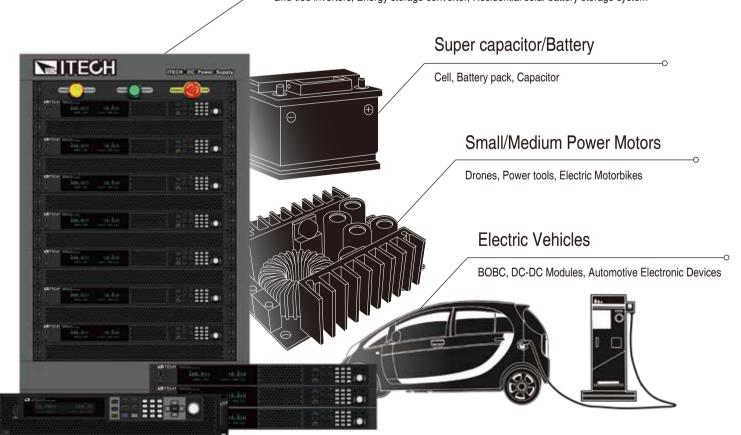
- Compact design, power up to 6kW in 1U space, power up to 12kW in 2U space
- Voltage range: 10-1500V
- Current range:-720A~1020A
- Power range:+/-12kW
- Wide range of output design, one unit can be used as multiple power supplies
- Bidirectional energy flow between the DUT and grid, seamless switching across quadrants
- With simple master/slave parallel connection, expand power while maintaining performance*1
- Efficient and environmentally friendly energy regenerative, effectively reducing the electricity and cooling costs
- CC/CV priority
- Adjustable output impedance
- Battery charging and discharging test
- Battery simulation, define the battery model
- Dynamic curve simulation function up to 10,000,000 points
- *1 If 1U models>16, 2U models>8, pls. contact ITECH.Parallel connection is not recommended under PV simulation function

- Built-in voltage curves comply with LV123, LV148, DIN40839, ISO-16750-2, SAEJ1113-11, LV124 and ISO21848 automotive standards*2
- Support photovoltaic I-V curves simulation function*3
- List function
- Support CC/CV/ CW/CR in sink mode
- Support CC/CV/CW in Source mode, and can simulate DC output internal resistance
- Multiple protection functions: OVP, ±OCP, ±OPP, OTP, power failure protection, anti-islanding protection
- Automatic detection of power grid status to realize reliable arid connection function
- Pre-charge function, to prevent overshoot of DC loading
- Standard build-in USB/CAN/LAN/digital IO communication interface, optional GPIB/analog & RS232

*2 Not available for 10V models

*3 Only available for 85V models

IT-M3900C Bidirectional Programmable DC Power Supply

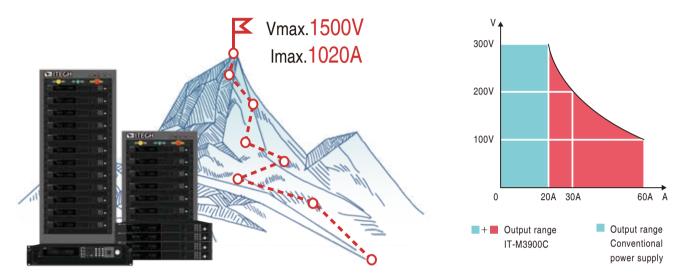

	Model	Current	Power	Size
	IT-M3901C-10-170	-120~170A	-1.2~1.7kW	1U
10V	IT-M3903C-10-340	-240~340A	-2.4~3.4kW	1U
10 V	IT-M3905C-10-510	-360~510A	-3.6~5.1kW	1U
	IT-M3910C-10-1020	-720~1020A	-7.2~10.2kW	2U
	Model	Current	Power	Size
	IT-M3902C-80-40	±40A	±2kW	1U
80V	IT-M3904C-80-80	±80A	±4kW	1U
OUV	IT-M3906C-80-120	±120A	±6kW	1U
	IT-M3912C-80-240	±240A	±12kW	2U
	Model	Current	Power	Size
	IT-M3902C-300-20	+20A	±2kW	1U
				. •
2001/	IT-M3904C-300-40	±40A	±4kW	1U
300V	IT-M3904C-300-40 IT-M3906C-300-60	±40A ±60A	±4kW ±6kW	
300V				1U
300V	IT-M3906C-300-60	±60A	±6kW	1U 1U
300V	IT-M3906C-300-60 IT-M3912C-300-120	±60A ±120A	±6kW ±12kW	1U 1U 2U
	IT-M3906C-300-60 IT-M3912C-300-120 Model	±60A ±120A Current	±6kW ±12kW	1U 1U 2U Size
300V 800V	IT-M3906C-300-60 IT-M3912C-300-120 Model IT-M3902C-800-8	±60A ±120A Current ±8A	±6kW ±12kW Power ±2kW	1U 1U 2U Size 1U

	Model	Current	Power	Size
	IT-M3902C-32-80	±80A	±2kW	1U
32V	IT-M3904C-32-160	±160A	±4kW	1U
32 V	IT-M3906C-32-240	±240A	±6kW	1U
	IT-M3912C-32-480	±480A	±12kW	2U
	Model	Current	Power	Size
	IT-M3902C-85-40SAS	±40A	±2kW	1U
85V*1	IT-M3904C-85-80SAS	±80A	±4kW	1U
	IT-M3906C-85-120SAS	±120A	±6kW	1U
	Model	Current	Power	Size
	IT-M3902C-500-12	±12A	±2kW	1U
E00\/	IT-M3904C-500-24	±24A	±4kW	1U
500V	IT-M3906C-500-36	±36A	±6kW	1U
	IT-M3912C-500-72	±72A	±12kW	2U
	Model	Current	Power	Size
1500V	IT-M3906C-1500-12	±12A	±6kW	1U

APPLICATION

PV energy storage

Grid-tied inverters, Energy storage converter, Residential solar battery storage system



^{*}All specifications are subject to change without notice.

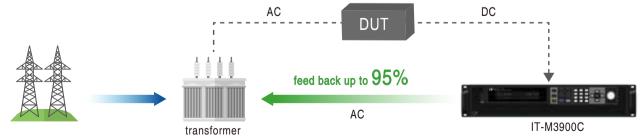
IT-M3900C Bidirectional Programmable DC Power Supply

Wide range output

There are 25 models included in IT-M3900C series. The output voltage ranges from 10V to 1500V and the maximum output current of a single unit can reach 1020A. The wide-range output design provides more voltage and current combinations than conventional fixed-range output DC power supplies, which is more flexible. Just a single unit can cover a wide range of applications which makes it easy to build power systems and largely save room for you at the same time.

Power regenerative and eco-friendly

With the power regeneration function, IT-M3900C can feed back up to 95% power instead of consuming it as heat. It not only save your cost of electricity, HVAC and cooling infrastructure, but also help to reduce carbon emission and impact on the environment. In addition, IT-M3900C has the function of automatic grid detection, which can detect phase voltage and frequency in real time and synchronizes with the grid to make energy regeneration automatic and safe.


Production facility: 24Hr/day x 7 work days x 52 weeks

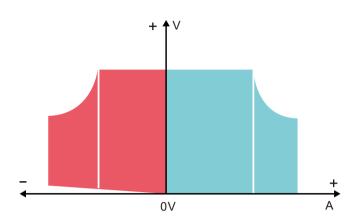
Power	Electricity cost saved (appr. USD/year)	CO ₂ emission reduced (appr. ton/year)
6 kW	6,971	50
12 kW	13,943	99
36 kW	41,828	298
96 kW	111,541	794

R&D lab: 8Hr/day x 5 work days x 52 weeks

Power	Electricity cost saved (appr. USD/year)	CO ₂ emission reduced (appr. ton/year)
6kW	1,747	12
12 kW	3,494	24
36 kW	10,483	71
96 kW	27,955	189

^{*} The extra cost of air conditioning is not included.

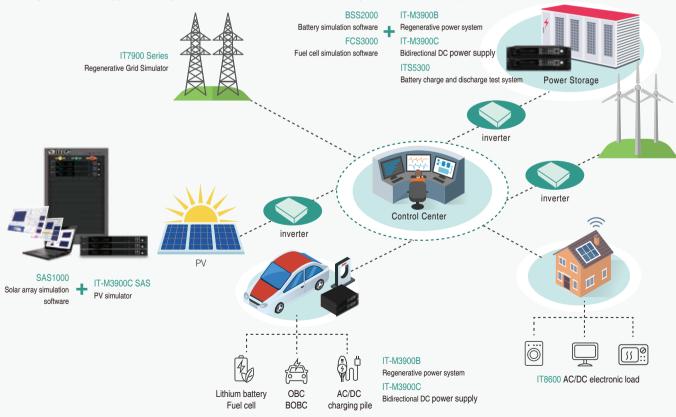
^{*} The data is based on :


^{1.} approximate electricity price 0.14USD/kWh for industry facility in California

^{2. 1}kWh power consumption \approx 0.997 CO emission

IT-M3900C Bidirectional Programmable DC Power Supply

Bidirectional current, seamless switching


The IT-M3900C series integrates bidirectional power supply and regenerative load functional characteristics in one unit for continuous supply and absorption of current. It not only can realize the function of power source, but also capable of sink to load current, that realize the fast and continuous seamless switching between output and sink current, to effectively avoid voltage or current overshoot. Compared with the conventional power supply and load test solutions, it not only saves the purchase cost, but also saves space and greatly simplifies the connection operation of the devices.

Application: Microgrid Testing

Microgrid can be regarded as a tiny power system, and also a typical distributed power generation function system. Therefore, whether they are equipment manufacturers or professional power grid research laboratories, it is all necessary to establish simulation test requirements.

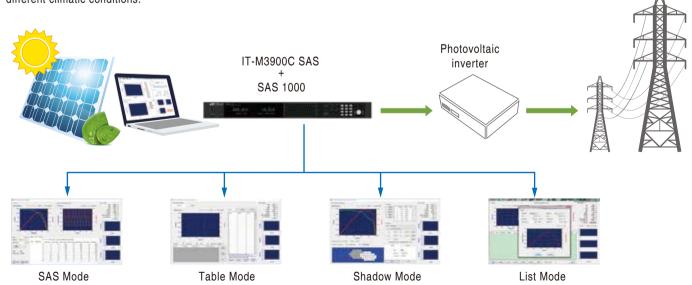
- As a photovoltaic simulation source, IT-M3900C SAS can accurately simulate the I-V curve of the solar cell array and solar panels to supply power for the inverter to test the photovoltaic inverter.
- As a battery simulator, IT-M3900C not only can simulate the battery to power up the inverter, but also meets the testing requirements of energy storage converters (PCS), various energy storage devices, and OBC/BOBC.
- IT-M3900C also has a built-in voltage curve for standard automotive power grids, including LV123/LV148 and other new energy vehicle regulations testing, which can be applied to many automotive electrical characteristics testing without the additional purchase of software.

IT-M3900C Bidirectional Programmable DC Power Supply

CC&CV priority function

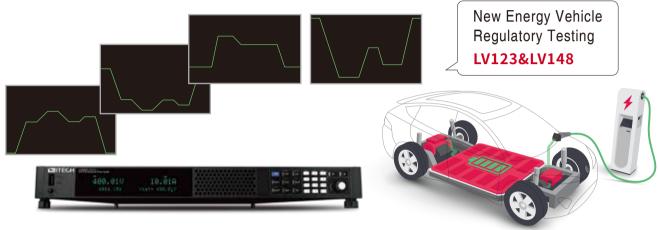
CC/CV priority can continue to help users solve various severe problems in long-term test applications to make applications that require high-speed power or non-overshoot more flexible. The CC&CV priority function of IT-M3900C allows the user to select the response speed and the loop working mode of the CC/CV loop to determine whether the output is high-speed voltage mode or non-overshoot current mode, which is suitable for high-power integrated circuit testing, charging and discharging testing, power transient simulation and characterization of automotive electronics. etc.

Battery simulation function


IT-M3900C series due to its unique bidirectional design and variable output impedance, the voltage, capacity, internal resistance and SOC of the battery can be set quickly through the panel to define the battery model to simulate the charging and discharging characteristics of the battery and assist in other various test. Meanwhile, users can also choose optional ITECH professional BSS2000 battery simulation software to set the common parameters of the battery pack to quickly establish the battery characteristic curve and the initial capacity of the battery, so as to verify the characteristics of the product in different battery states. The characteristics of the state. At the same time, BSS2000 supports users to import matlab battery modules or import the actual battery charge and discharge curve through csy file to make it more realistic

BSS2000 battery simulation software test UI

Solar array simulation


IT-M3900C SAS has a built-in maximum power point tracking (MPPT) mechanism to provide solar photovoltaic curve simulation function for maximum power point tracking test of photovoltaic arrays/modules/batteries. Users can also choose optional SAS1000 solar array simulation software, which can accurately simulate the IV curve of the solar array. The built-in SAS models of EN50530, Sandia, NB/T32004, CG-C/GF004, CGC/GF035 enable to simulate the IV curve output and generate reports after simply set the parameters to test the static and dynamic maximum power tracking performance of the photovoltaic inverter. User can also edit any IV curve that shields up to 4096 points to achieve dynamic cloud shielding effect, or store 100 IV curves under different illumination and temperature in the memory, and set the execution time and order of each curve, thereby To test the long-term maximum power tracking performance of photovoltaic inverters under different climatic conditions.

IT-M3900C Bidirectional Programmable DC Power Supply

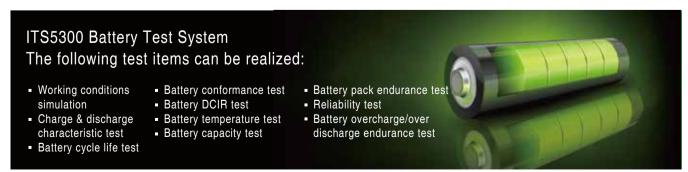
Built-in a variety of standard automotive test curves

Automotive electronics may often encounter power transients during vehicle start-up and operation. To ensure that the device under test can withstand these actual transients, the tester must simulate worst-case power transient conditions during the test. According to the relevant standards of the industry, IT-M3900C had not only built-in standard automotive voltage curve DIN40839, ISO-16750-2, SAEJ1113-11 LV124 and ISO21848, but also built-in LV123, LV148 and other standards for new energy vehicles testing. Users can directly retrieve from the panel to test the performance of relevant automotive electronics, without reprogramming or purchasing additional test software, saving effort and money compared to other competitive products.

High efficiency parallel connection technology

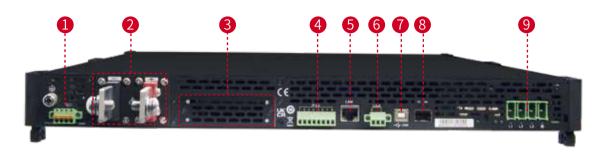
Considering the user's convenience and versatility, IT-M3900C can use master/slave control mode to connect multiple power supplies in parallel to meet high-power testing requirements. Meanwhile ITECH fiber optic parallel technology fully solve the problems of slow speed and poor accuracy of traditional parallel methods. It is suitable for calibration and measurement, R&D lab, production line and ATE test.

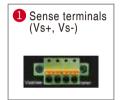
* Parallel connection is not recommended under PV simulation function


The parameters will not change after parallel connection

Calibration is not requested after parallel connection Optical fiber transfer between master and slave. guarantee perfect performance of anti-interference

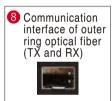
Adopt Optical fiber isolation technology, effective protection of the device and DUT

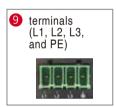

Charging/Discharging test


IT-M3900C series have unique bidirectional design, variable output impedance and CC / CV / CP / CR four operation modes under load mode, one unit IT-M3900C can simulate the charging and discharging characteristics of the battery and realize the setting of various test conditions and data processing of the battery. It is suitable for charging / discharging tests of various portable batteries.

IT-M3900C Bidirectional Programmable DC Power Supply

Multiple interfaces





Optional Accessories

Category	Model	Specification	Description
	IT-E4029-15U	IT15U cabinet	800mm×550mm X907.6mm
	IT-E4029-27U	IT27U cabinet	800mm×600mm×1362.75mm
Parallel kit	IT-E4029-37U	IT37U cabinet	800mm×600mm×1764.35mm
KIL	IT-E168	Optical fiber cable kit	Used for parallel connection between the units in a cabinet
	IT-E155A/B/C	Cabinet rack mount Kit	Cabinet rack mount installation
	IT-E165A-250 *1	Anti-reverse protection unit 750V/250A	avoid reverse connection
Functional	IT-E165A-400 *1	Anti-reverse protection unit 750V/400A	avoid reverse connection
Module	IT-E165A-500 *1	Anti-reverse protection unit 900V/400A	avoid reverse connection
	IT-E165B *2	Anti-EMF unit1200V/200A	avoid current back flow
	IT-E258E	5m power cord for 1U/2U unit, EU standard	AC input power cord
	IT-E258E-15U	5m power cord for 15U unit, EU standard	AC input power cord
Other	IT-E258E-27U	5m power cord for 27U unit, EU standard	AC input power cord
accessories	IT-E258E-37U	5m power cord for 37U unit, EU standard	AC input power cord
	IT-E176	GPIB communication interface	
	IT-E177	RS232&analog communication card	

IT-E4029-15U (Dimension:mm)

- *1 The voltage/current of the DUT must be within the IT-E165A rated range
- *2 The voltage/current of the DUT must be within the IT-E165B rated range

IT-M3900C Bidirectional Programmable DC Power Supply

Specification

		IT-M3905C-10-510	IT-M3906C-32-240	IT-M3906C-80-120
	Voltage	0~10V	0∼32V	0~80V
	Current	-360A∼510A	-240A∼240A	-120A∼120A
Rated value	Power	-3600W~5100W	-6000W~6000W	-6000W~6000W
	Series IR(CV priority)	0~0.02Ω	0~0.2Ω	0~0.3Ω
	Load resistance(CC priority mode)	$0.003\Omega\!\sim\!1\Omega$	$0.005\Omega\!\sim\!400\Omega$	0.01Ω~800Ω
	Voltage	0.001V	0.001V	0.001V
	Current	0.1A	0.01A	0.01A
Setup Resolution	Power	1W	1W	1W
Cotap Hodolation	Series IR(CV priority)	0.001Ω	0.001Ω	0.001Ω
	Load resistance(CC priority mode)	0.001Ω	0.001Ω	0.01Ω
	Voltage	0.001V	0.001V	0.001V
Readback Resolution	Current	0.1A	0.01A	0.01A
	Power	1W	1W	1W
	Voltage	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS
	_	≤0.1% + 0.1%FS	≤0.05% + 0.05% G ≤0.1% + 0.1%FS	≤0.00% + 0.00% S ≤0.1% + 0.1%FS
O-t A	Current	≤0.1% + 0.1% S ≤0.5% + 0.5% FS	≤0.1% + 0.1%FS ≤0.5% + 0.5%FS	≤0.5% + 0.5%FS
Setup Accuracy		≤0.5% + 0.5%FS ≤1%FS	≤0.5% + 0.5%F5 ≤1%FS	≤0.5% + 0.5%F5 ≤1%FS
	Series IR(CV priority) Load resistance(CC priority mode)	Max.: 1/(1/Rset+(1/Rset)*0.1+0.008)	Max.: 1/(1/Rset+(1/Rset)*0.05+0.0005)	Max.: 1/(1/Rset+(1/Rset)*0.05+0.0005)
	1 1 1 1	Min.: 1/(1/Rset-(1/Rset)*0.1-0.008) ≤ 0.03% + 0.03%FS	Min.: 1/(1/Rset-(1/Rset)*0.05-0.0005) ≤ 0.03% + 0.03%FS	Min.: 1/(1/Rset-(1/Rset)*0.05-0.0005) ≤0.03% + 0.03%FS
D A	Voltage	≤0.05% + 0.05% 5 ≤0.1% + 0.1%FS	≤0.03% + 0.03% i 3 ≤0.1% + 0.1%FS	≤0.03% + 0.03% 3 ≤0.1% + 0.1%FS
Readback Accuracy	Current			
	Power	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS
Voltage Ripple*1	Peak value	≤65mVpp	≤80mVpp	≤200mVpp
Diag Time (no load)	RMS	≤10mV	≤30mV	≤60mV
Rise Time (no load)	Voltage	≤50ms	≤30ms	≤15ms
Rise Time (full load)	Voltage	≤100ms	≤60ms	≤30ms
Fall Time (no load)	Voltage	≤100ms	≤60ms	≤30ms
Fall Time (full load)	Voltage	≤50ms	≤30ms	≤15ms
Dynamic Response Time	Voltage	≤10ms	≤1ms *2	≤1ms ^{*2}
Power Regulation Rate	Voltage	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS
	Current	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS
Load Regulation Rate	Voltage	0.0035%*I + 0.05%FS	≤0.02% + 0.02%FS	≤0.01% + 0.01%FS
	Current	≤0.05% + 0.05%FS	≤0.05% + 0.05%FS	≤0.05% + 0.05%FS
	OCP	-370A or 520A	-250A or 250A	-125A or 125A
Input Protection Scope	OVP	10.5V	33V	82V
	OPP	-3672W or 5202W	-6120W or 6120W	-6120W or 6120W
Remote Sense Compensat	ion Voltage	≤2V	≤2V	≤2V
	Voltago	3ϕ 110V \sim 520V	3φ 110V~520V	3φ 110V∼520V
AC Input *3	Voltage	1φ 85V~300V	1φ 85V~300V	1φ 85V~300V
	Frequency	50/60Hz	50/60Hz	50/60Hz
Max. AC Apparent Power		5.55kVA	6.5kVA	6.5kVA
Max. AC Current		12.5Aac	12.5Aac	12.5Aac
Max. Efficiency		92%	91%	92%
Power Factor		0.99	0.99	0.99
DC Component		≤0.2A	≤0.2A	≤0.2A
Current Harmonic		≤3%	≤3%	≤3%
Program Response Time		0.1ms	0.1ms	0.1ms
Withstand Voltage (DC to g	round)	300Vdc	300Vdc	300Vdc
Withstand Voltage (AC to g	•	3500Vdc	3500Vdc	3500Vdc
Dimension		660mm*437mm*43.5mm	660mm*437mm*43.5mm	660mm*437mm*43.5mm

^{*1} The ripple is got under three-phase AC input

^{*2 25% - 90%} rated current

^{*} This information is subject to change without notice.

^{*3} The AC will be limited to 12.5Aac. When the AC input is low, power will be limited. E.g: Three-phase input, line voltage 200Vac, the power is: P=200Vac*12.5Aac*1.732=4330VA Single-phase input, phase voltage 200Vac, the power is: P=200Vac*12.5Aac=2500VA

IT-M3900C Bidirectional Programmable DC Power Supply

Specification

		IT-M3906C-85-120SAS	IT-M3906C-300-60	IT-M3906C-500-36
	Voltage	0∼85V	0∼300V	0∼500V
	Current	-120A~120A	-60A∼60A	-36A∼36A
Rated value	Power	-6000W~6000W	-6000W~6000W	-6000W ~ 6000W
	Series IR(CV priority)	0~0.3Ω	0∼1Ω	$0\!\sim\!1\Omega$
	Load resistance(CC priority mode)	1	$0.05\Omega\!\sim\!3000\Omega$	$0.1\Omega\!\sim\!5000\Omega$
	Voltage	0.001V	0.01V	0.01V
	Current	0.01A	0.001A	0.001A
Setup Resolution	Power	1W	1W	1W
	Series IR(CV priority)	0.001Ω	0.001Ω	0.01Ω
	Load resistance(CC priority mode)	1	0.01Ω	0.01Ω
	Voltage	0.001V	0.01V	0.01V
Readback Resolution	Current	0.01A	0.001A	0.001A
	Power	1W	1W	1W
	Voltage	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS
	Current	≤0.1% + 0.1%FS	≤0.1% + 0.1%FS	≤0.1% + 0.1%FS
Setup Accuracy	Power	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS
	Series IR(CV priority)	≤1%FS	≤1%FS	≤1%FS
	Load resistance(CC priority mode)	1	Max.: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset-(1/Rset)*0.05-0.0001)	Max.: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset-(1/Rset)*0.05-0.0001)
	Resolution(V-I curve)	1024	/ ////////////////////////////////////	/ / ///nset (//nset) 0.00-0.0001)
Readback Accuracy	Voltage	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS
	Current	≤0.1% + 0.1%FS	≤0.1% + 0.1%FS	≤0.1% + 0.1%FS
, rough of ricouracy	Power	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS	≤0.5% + 0.5%FS
V. I. D. I.	Peak value	≤200mVpp	≤300mVpp *1	≤500mVpp *1
Voltage Ripple	RMS	≤60mV	≤50mV *1	≤80mV *1
Rise Time (no load)	Voltage	≤15ms	≤30ms	≤30ms
Rise Time (full load)	Voltage	≤30ms	≤60ms	≤60ms
Fall Time (no load)	Voltage	≤30ms	≤30ms	≤30ms
Fall Time (full load)	Voltage	≤15ms	≤15ms	≤15ms
Dynamic Response Time	Voltage	≤1ms ^{*2}	≤1ms *2	≤1ms *2
	Voltage	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS
Power Regulation Rate	Current	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS
	Voltage	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS
Load Regulation Rate	Current	≤0.03% + 0.03%FS	≤0.05% + 0.05%FS	≤0.05% + 0.05%FS
	OCP	-125A or 125A	-63A or 63A	-37A or 37A
Input Protection Scope	OVP	86V	303V	505V
	OPP	-6120W or 6120W	-6120W or 6120W	-6120W or 6120W
Remote Sense Compensat		≤2V	≤3V	≤5V
· ·		3φ 110V ~ 520V	3φ 110V~520V	3φ 110V ~ 520V
AC Input *3	Voltage	1φ 85V~300V	1φ 85V~300V	1φ 85V~300V
AO Iliput	Frequency	50/60Hz	50/60Hz	50/60Hz
Max. AC Apparent Power	,	6.5kVA	6.5kVA	6.5kVA
Max. AC Current		12.5Aac	12.5Aac	12.5Aac
Max. Efficiency		92%	94.5%	94.5%
Power Factor		0.99	0.99	0.99
DC Component		≤0.2A	≤0.2A	≤0.2A
Current Harmonic		≤3%	≤0.2A ≤3%	≤3%
Program Response Time		0.1ms	≤3% 0.1ms	0.1ms
Withstand Voltage (DC to g	round)	300Vdc	600Vdc	800Vdc
Withstand Voltage (AC to g	•	3500Vdc	3500Vdc	3500Vdc
Dimension	iouiiuj			
N.W.		660mm*437mm*43.5mm	660mm*437mm*43.5mm	660mm*437mm*43.5mm
14.44.		15kg	15kg	15kg

^{*1} The ripple is got under three-phase AC input

*3 The AC will be limited to 12.5Aac. When the AC input is low, power will be limited. E.g: Three-phase input, line voltage 200Vac, the power is: P=200Vac*12.5Aac*1.732=4330VA Single-phase input, phase voltage 200Vac, the power is: P=200Vac*12.5Aac=2500VA

^{*2 25% - 90%} rated current

^{*} This information is subject to change without notice.

IT-M3900C Bidirectional Programmable DC Power Supply

Specification

e to the state of	$0 \sim 800V$ $-24A \sim 24A$ $-6000W \sim 6000W$ $0 \sim 1Ω$ $0.15Ω \sim 7500Ω$ $0.01V$ $0.001A$ $1W$ $0.01Ω$ $0.01Ω$ $0.01V$ $0.001A$ $1W$ $≤ 0.03% + 0.03%FS$ $≤ 0.1% + 0.1%FS$ $≤ 0.5% + 0.5FS$ $≤ 1%FS$ $≤ 1.1%FS$ $≤ 0.5% + 0.5%FS$ $≤ 1.1/(1/Rset{1/Rset}^0.05+0.0001)$ $≤ 0.03% + 0.03%FS$ $≤ 0.1% + 0.1%FS$ $≤ 0.5% + 0.5%FS$ $≤ 1.1/(1/Rset) + 0.1%FS$ $≤ 0.5% + 0.5%FS$ $≤ 0.1% + 0.1%FS$ $≤ 0.5% + 0.5%FS$ $≤ 1000mVpp ¹$ $≤ 100mV ¹$ $≤ 30mS$	$0 \sim 1500V$ $-12A \sim 12A$ $-6000W \sim 6000W$ $0 \sim 1\Omega$ $0.5\Omega \sim 7500\Omega$ $0.01V$ $0.001A$ $1W$ 0.01Ω 0.01Ω $0.01V$ $0.001A$ $1W$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ $Max: 1/(1/Reel+(1/Reel)^*0.05+0.0001)$ $Min: 1/(1/Reel+(1/Reel)^*0.05+0.0001)$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1.5\% + 0.5\%FS$ $\leq 1.5\% + 0.5\%FS$ $\leq 1.5\% + 0.5\%FS$ $\leq 1.500WVpp^*1$	
IR(CV priority) esistance(CC priority mode) e tit IR(CV priority) esistance(CC priority mode) e e tit IR(CV priority) esistance(CC priority mode) e e tit IR(CV priority) esistance(CC priority mode) e e tit	$ \begin{array}{l} -24A \sim 24A \\ -6000W \sim 6000W \\ 0 \sim 1\Omega \\ 0.15\Omega \sim 7500\Omega \\ 0.01V \\ 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \frac{Max: 1/(1/Rset(1/Rset)^*0.05+0.0001)}{Min. 1/(1/Rset(1/Rset)^*0.05+0.0001)} \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1.0\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1000mVpp^{*1} \\ \leq 100mV \\ \end{array} $	$\begin{array}{l} -6000W \sim 6000W \\ 0 \sim 1\Omega \\ 0.5\Omega \sim 7500\Omega \\ 0.01V \\ 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \text{Min: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
IR(CV priority) esistance(CC priority mode) e tit IR(CV priority) esistance(CC priority mode) e tit e tit IR(CV priority) esistance(CC priority mode) e tit e tit IR(CV priority) esistance(CC priority mode) e tit	$0 \sim 1\Omega$ $0.15\Omega \sim 7500\Omega$ $0.01V$ $0.001A$ $1W$ 0.01Ω 0.01Ω $0.01V$ $0.001A$ $1W$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ $Max : 1/(1/Rset+(1/Rset)^*0.05+0.0001)$ $Min. : 1/(1/Rset+(1/Rset)^*0.05+0.0001)$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1.000mVpp^*1$ $\leq 100mVpp^*1$	$\begin{array}{l} 0 \sim 1\Omega \\ 0.5\Omega \sim 7500\Omega \\ 0.01V \\ 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \text{Min: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
IR(CV priority) esistance(CC priority mode) e tit IR(CV priority) esistance(CC priority mode) e e tit IR(CV priority) esistance(CC priority mode) e e tit IR(CV priority) esistance(CC priority mode) e e tit IR(CV priority)	0.15Ω~7500Ω 0.01V 0.001A 1W 0.01Ω 0.01Ω 0.01Ω 0.01V 0.001A 1W ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset+(1/Rset)*0.05+0.0001) ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1000mVpp *1 ≤ 100mV *1	$\begin{array}{l} 0.5\Omega \sim 7500\Omega \\ 0.01V \\ 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01D \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.} : 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ \text{Min.} : 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
esistance(CC priority mode) e IR(CV priority) esistance(CC priority mode) e tt IR(CV priority) esistance(CC priority mode) e tt IR(CV priority) esistance(CC priority mode) e tt value	0.01V 0.001A 1W 0.01Ω 0.01Ω 0.01V 0.001A 1W ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Mn.: 1/(1/Rset+(1/Rset)*0.05+0.0001) ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1000mVpp 1 ≤ 100mV 1	$\begin{array}{l} 0.01V \\ 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ Max: 1/(1/Rsel+(1/Rsel)^0.05+0.0001) \\ Min: 1/(1/Rsel+(1/Rsel)^0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
e e tot IR(CV priority) esistance(CC priority mode) e tot IR(CV priority) esistance(CC priority mode) e tot IR(CV priority) esistance(CC priority mode) e tot value	$ 0.001A $ $1W $ $0.01Ω $ $0.01Ω $ $0.01V $ $0.001A $ $1W $ $≤ 0.03% + 0.03%FS $ $≤ 0.1% + 0.1%FS $ $≤ 0.5% + 0.5%FS $ $≤ 1%FS $ $Max: 1/(1/Rset+(1/Rset)^*0.05+0.0001) $ $Min. : 1/(1/Rset+(1/Rset)^*0.05+0.0001) $ $≤ 0.03% + 0.03%FS $ $≤ 0.1% + 0.1%FS $ $≤ 0.5% + 0.5%FS $ $≤ 1000mVpp 1 $ $≤ 100mV 1 $	$\begin{array}{l} 0.001A \\ 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \text{Min: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^*1 \end{array}$	
IR(CV priority) esistance(CC priority mode) e th e th IR(CV priority) esistance(CC priority mode) e th ralue	1W 0.01Ω 0.01Ω 0.01Ω $0.01V$ $0.001A$ 1W ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset+(1/Rset)*0.05+0.0001) ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1000mVpp 1 ≤ 100mV 1	$\begin{array}{l} 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.} 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ \text{Min.} 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
IR(CV priority) esistance(CC priority mode) e tit e tit IR(CV priority) esistance(CC priority mode) e e tit ralue	1W 0.01Ω 0.01Ω 0.01Ω $0.01V$ $0.001A$ 1W ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset+(1/Rset)*0.05+0.0001) ≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1000mVpp 1 ≤ 100mV 1	$\begin{array}{l} 1W \\ 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ Max.: 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ Min.: 1/(1/Reel+(1/Reel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
IR(CV priority) esistance(CC priority mode) e tit e IR(CV priority) esistance(CC priority mode) e e tit ralue	$\begin{array}{l} 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \text{Min.: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1000mVpp^{-1} \\ \leq 100mV^{-1} \end{array}$	$\begin{array}{l} 0.01\Omega \\ 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.: } 1/(1/Rset/(1/Rset)^0.05+0.0001) \\ \text{Mm.: } 1/(1/Rset/(1/Rset)^0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
esistance(CC priority mode) e e tit e tit IR(CV priority) esistance(CC priority mode) e tit value	$\begin{array}{l} 0.01\Omega \\ 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.}: 1/(1/\text{Rset}/(1/\text{Rset})^*0.05+0.0001) \\ \text{Min.}: 1/(1/\text{Rset}/(1/\text{Rset})^*0.05-0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1000mVpp^{-1} \\ \leq 100mV^{-1} \end{array}$	$\begin{array}{l} 0.01\Omega \\ 0.01V \\ 0.001A \\ 11W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.: } 1/(1/Rset_1(1/Rset_1)^0.05+0.0001) \\ \text{Min.: } 1/(1/Rset_1(1/Rset_1)^0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp ^{*1} \end{array}$	
e e tot t e e tot t IR(CV priority) esistance(CC priority mode) e e tot t value	$\begin{array}{l} 0.01V \\ 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.} $	0.01V 0.001A 1W ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Mm: 1/(1/Rset+(1/Rset)*0.05-0.0001) ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1500mVpp *1	
e IR(CV priority) esistance(CC priority mode) e int	$\begin{array}{l} 0.001A \\ 1W \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1\%FS \\ \text{Max.} : 1/(1/Rsel+(1/Rsel+0.05+0.0001) \\ \text{Min.} : 1/(1/Rsel+(1/Rsel+0.05+0.0001)) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1000mVpp^{-1} \\ \leq 100mV^{-1} \end{array}$	0.001A 1W ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1%FS Max.: 1/(1/Rsel+(1/Rsel)*0.05+0.0001) Mim.: 1/(1/Rsel+(1/Rsel)*0.05+0.0001) ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1500mVpp *1	
e IR(CV priority) esistance(CC priority mode) e nt	1W $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ Max: 1/(/lset/(l/Ret)*0.05+0.0001) Min.: 1/(/lset/(l/Ret)*0.05+0.0001) $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1000mVpp^{-1}$ $\leq 100mV^{-1}$	1W ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1%FS Max: '1(\(\text{I'}\)Rest(\(\text{1'}\)Rest(\text{1''}\)Rest(\text{1''}\)Rest(\(\text{1''}\)Rest(\(\text{1''}\)Rest(\(\text{1''}\)Rest(\text{1''}\)Rest(\(\text{1''}\)Rest(\(\text{1''}\)Rest(\(\text{1''}\)Rest(\text{1''}\)Rest(\(\text{1''}\)R	
e IR(CV priority) esistance(CC priority mode) e e nt value	$ \leq 0.03\% + 0.03\%FS $ $ \leq 0.1\% + 0.1\%FS $ $ \leq 0.5\% + 0.5\%FS $ $ \leq 1\%FS $ $ Max: 1/(1/Rset/(1/Rset)^*0.05+0.0001) $ $ \leq 0.03\% + 0.03\%FS $ $ \leq 0.1\% + 0.1\%FS $ $ \leq 0.5\% + 0.5\%FS $ $ \leq 1000mVpr^{-1} $ $ \leq 100mV^{-1} $	$\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ $\leq 1\%FS$ $\leq 1\%(FS)$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1.50mVpp^{*1}$	
IR(CV priority) esistance(CC priority mode) e at t	$ \leq 0.1\% + 0.1\%FS $ $ \leq 0.5\% + 0.5\%FS $ $ \leq 1\%FS $ $ \text{Max.} : 1/(1/Rset+(1/Rset)^*0.05+0.0001) $ $ \text{Min.} : 1/(1/Rset+(1/Rset)^*0.05+0.0001) $ $ \leq 0.03\% + 0.03\%FS $ $ \leq 0.1\% + 0.1\%FS $ $ \leq 0.5\% + 0.5\%FS $ $ \leq 1000mVpp^{*1} $ $ \leq 100mV^{*1} $	$\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ Max: $1/(1/Rset)(1/Rset)(0.05+0.0001)$ Min: $1/(1/Rset)(1/Rset)(0.05+0.0001)$ $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1500mVpp^{*1}$	
IR(CV priority) esistance(CC priority mode) e at value	$ \leq 0.5\% + 0.5\%FS $ $ \leq 1\%FS $	$\leq 0.5\% + 0.5\%FS$ $\leq 1\%FS$ Max: 1/(1/Rset)(1/Rset)(0.05+0.0001) Min: 1/(1/Rset)(1/Rset)(0.05+0.0001) $\leq 0.03\% + 0.03\%FS$ $\leq 0.1\% + 0.1\%FS$ $\leq 0.5\% + 0.5\%FS$ $\leq 1500mVpp *1$	
IR(CV priority) esistance(CC priority mode) e at tralue	≤1%FS Max: 1/(1/Rset+(1/Rset)*0.05+0.0001) Min.: 1/(1/Rset+(1/Rset)*0.05+0.0001) ≤0.03% + 0.03%FS ≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1000mVpp *1 ≤100mV *1	$ \leq 1\%FS \\ \text{Max.: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \text{Min.: } 1/(1/Rsel+(1/Rsel)^*0.05+0.0001) \\ \leq 0.03\% + 0.03\%FS \\ \leq 0.1\% + 0.1\%FS \\ \leq 0.5\% + 0.5\%FS \\ \leq 1500mVpp *1 $	
esistance(CC priority mode) e e int value	$\begin{aligned} &\text{Max.: } 1 / (1/\text{Rset} + (1/\text{Rset})^* 0.05 + 0.0001) \\ &\text{Min.: } 1 / (1/\text{Rset} + (1/\text{Rset})^* 0.05 + 0.0001) \\ &\leq 0.03\% + 0.03\% \text{FS} \\ &\leq 0.1\% + 0.1\% \text{FS} \\ &\leq 0.5\% + 0.5\% \text{FS} \\ &\leq 1000 \text{mVpp}^{-1} \\ &\leq 100 \text{mV} \end{aligned}$	$\begin{aligned} &\text{Max.: } 1/(1/\text{Rset}_1(1/\text{Rset}_1)^*0.05+0.0001) \\ &\text{Min.: } 1/(1/\text{Rset}_1(1/\text{Rset}_1)^*0.05-0.0001) \\ &\leq 0.03\% + 0.03\% \text{FS} \\ &\leq 0.1\% + 0.1\% \text{FS} \\ &\leq 0.5\% + 0.5\% \text{FS} \\ &\leq 1500 \text{mVpp} \end{aligned}$	
e tit value	Min.: $1/(1/Rset)^{1}(0.050.0001)$ ≤ $0.03\% + 0.03\%FS$ ≤ $0.1\% + 0.1\%FS$ ≤ $0.5\% + 0.5\%FS$ ≤ $1000mVpp^{*1}$ ≤ $100mV^{*1}$	≤ 0.03% + 0.03%FS ≤ 0.1% + 0.1%FS ≤ 0.5% + 0.5%FS ≤ 1500mVpp *1	
ralue e	≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1000mVpp 1 ≤100mV 1	≤0.1% + 0.1%FS ≤0.5% + 0.5%FS ≤1500mVpp *1	
value e	≤0.5% + 0.5%FS ≤1000mVpp 1 ≤100mV 1	≤ 0.5% + 0.5%FS ≤ 1500mVpp ^{*1}	
value e	≤1000mVpp 1 ≤100mV 1	≤1500mVpp *1	
е	≤100mV *1		
		≤150mV *	
	≤30ms		
e		≤30ms	
	≤60ms	≤60ms	
е	≤30ms	≤30ms	
е	≤15ms	≤15ms	
е	≤1ms ^{'2}	≤1ms ^{*2}	
е	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS	
nt	≤0.03% + 0.03%FS	≤0.03% + 0.03%FS	
е	≤0.01% + 0.01%FS	≤0.01% + 0.01%FS	
nt	≤0.05% + 0.05%FS	≤0.05% + 0.05%FS	
	-25A or 25A	-12.5A or 12.5A	
	808V	1515V	
	-6120W or 6120W	-6120W or 6120W	
ge	≤8V	≤15V	
	3φ 110V ~ 520V	3φ 110V ~ 520V	
е	1φ 85V~300V	1ϕ 85V \sim 300V	
ency	50/60Hz	50/60Hz	
	6.5kVA	6.5kVA	
	12.5Aac	12.5Aac	
	94.5%	94.5%	
	0.99	0.99	
		≤0.2A	
		≤3%	
		0.1ms	
		1800Vdc	
		3500Vdc	
		660mm*437mm*43.5mm	
		15kg	
e nt e nt		≤0.01% + 0.01%FS ≤0.03% + 0.03%FS ≤0.01% + 0.01%FS ≤0.05% + 0.05%FS -25A or 25A 808V -6120W or 6120W ≤8V 3φ 110V ~520V 1φ 85V ~300V 50/60Hz 6.5kVA 12.5Aac 94.5%	

^{*1} The ripple is got under three-phase AC input

^{*2 25% - 90%} rated current

^{*} This information is subject to change without notice.

^{*3} The AC will be limited to 12.5Aac. When the AC input is low, power will be limited. E.g: Three-phase input, line voltage 200Vac, the power is: P=200Vac*12.5Aac*1.732=4330VA Single-phase input, phase voltage 200Vac, the power is: P=200Vac*12.5Aac=2500VA

This information is subject to change without notice. For more information, please contact ITECH.

Taipei

Add: No.918, Zhongzheng Rd., Zhonghe Dist., New Taipei City

235, Taiwan

Web: www.itechate.com TEL: +886-3-6684333 E-mail: info@itechate.com

Factory I

Add: No.108, XiShanqiao Nanlu, Nanjing city, 210039, China

TEL: +86-25-52415098 Web: www.itechate.com

Factory II

Add: No.150, Yaonanlu, Meishan Cun, Nanjing city, 210039, China

TEL: +86-25-52415099 Web: www.itechate.com

ECH Wah

ITECH LinkedIn