DESCRIPTION

CS1-F economic type Frequency Indicator has been designed with high accuracy measurement, display and communication of Frequency.
\checkmark The innovation feature is auto-range input from 0.01 Hz 100 KHz (option $\sim 140 \mathrm{KHz}$) and the display resolution will auto-change to show the highest according to input frequency.
They are also available 1 option of 1 Relay outputs, 1 Analogue output or 1 RS485(Modbus RTU Mode) interface with versatile
 functions such as control, alarm, re-transmission or communication for a wide range of panels and testing applications.

FEATURE

- Measuring Frequency AUTO RANGE $0.01 \sim 100 \mathrm{KHz} / \sim 140 \mathrm{KHz}$ (optional) / Voltage pulse or sine wave(specify).
- Accuracy: $\pm 0.005 \%$; Display range: 0~99999; Decimal Point auto moving according to input frequency
- Option available 1 of 1 relay, 1 analogue output or RS485(Modbus RTU mode)
- 1 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay /

Hysteresis / Energized \& De-energized Delay functions.

- Analogue output or RS 485 communication port in option
- CE Approved \& RoHS

APPLICATIONS

- MCC panel, Machinery, Switch gear... for Frequency Measuring, Alarm or Communication with PC/PLC
- Testing Equipments for Frequency Measuring, Alarm or Communication with PC/PLC

ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input

Input Frequency	Input Mode	Input Level
$\mathbf{0 . 0 1 H z} \sim \mathbf{5 0 ~ H z}$	Voltage Pulse	High Level: over $2 / 3$ of input level
$\mathbf{0 . 0 1 H z} \sim \mathbf{1 0 0 K H z}$		Low Level: under $1 / 3$ of input level
$\mathbf{0 . 0 1 H z} \sim \mathbf{1 4 0 K H z}$ (option)	Sine Wave	

Calibration:	Doesn't need calibration
Input range:	Auto range: $0.01 \mathrm{~Hz} \sim 100 \mathrm{KHz}$ ($\sim 140 \mathrm{KHz}$ in option);
Accuracy:	$\leq \pm 0.005 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$;
Sampling time:	15 cycles $/ \mathrm{sec}(\geq 15 \mathrm{~Hz}$); f cycles/sec($\leq 15 \mathrm{~Hz}$)
Response time:	$\leq 100 \mathrm{msec}$ (when the AvG = "1")
Time out function:	Auto, Manual programmable, In manual mode, the period of time out can be set $0.0 \mathrm{sec} \sim 999.9 \mathrm{sec}$
Display \& Functions	
LED:	Numeric: 5 digits, $0.8^{\prime \prime}(20.0 \mathrm{~mm}) \mathrm{H}$ red high-brightness LED
	Relay output indication: 1 square red LED
	RS 485 communication: 1 square orange LED
	E.C.I. function indication: 1 square green LED
	Max/Mini Hold indication: 2 square orange LED

Down key function indication(Reset for Max.(Mini.) Hold I
PV Hold / Rel. PV): 1 square green LED
Display range:
Resolution of PV: (Auto-Moving for d.p.)
Compensation factor:
Over range indication:
Max / Mini recording: Display functions:
Front key functions:
Low cut:
Digital fine adjust:
0.0000~99999 with auto moving of decimal point Decimal point will Auto-changed according to input Auto / Semi-Auto / Fix; 3 mode programmable Compensate error from 0.001~9.999 ouFL, when input is over 20% of input range Hi Maxi \& Mini Value of PV storage during power on. PV / Max(Mini) Hold / RS 485 programmable Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable Settable range: -19999~29999 counts Pu.? г o: Settable range: 0~+99999 $P_{u} .5 P_{n}$: Settable range: $0 \sim+99999$

Reading Stable Function
Average: Settable range: 1~99 times
Moving average: \quad Settable range: 1 (None) ~ 10 times
Digital filter: \quad Settable range: 0 (None)/1~99 times

Control Functions(option)

One set-point
Control relay: $\quad 1$ Relay, FORM-C, 5A/230Vac 10A/115V
Relay energized mode: Energized levels compare with set-points:
Hi / Lo / Hi.HLd / Lo.HLd programmable
Energizing functions: Start delay / Energized \& De-energized delay / Hysteresis Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0-9(Minutes):59.9(Second) Energized delay time: 0.00.0~9(Minutes):59.9(Second) De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) Hysteresis: 0~5000 counts

Analogue output(option)

Accuracy:	$\leq \pm 0.1 \%$ of F.S.;
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{msec}$. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Output capability:	Voltage: $0 \sim 10 \mathrm{~V}: \geq 1000 \Omega$;
	Current: 4(0) 20 mA : $\leq 500 \Omega$ max
Functions:	Ro.H5 (output range high): Settable range: 0~99999
	Ro.L 5 (output range Low): Settable range: 0~99999
Digital fine adjust:	Ro.? $\mathrm{r}_{\text {o }}$: Settable range: -38011~27524
	Ro.5Pn : Settable range: -38011~27524

RS 485 Communication(option)

Protocol:	Modbus RTU mode
Baud Rate:	1200/2400/4800/9600/19200/38400 programmable
Data Bits:	8 bits
Parity:	Even, odd or none (with 1 or 2 stop bit) programmable
Address:	$1 \sim 255$ programmable
Remote Display:	to show the value from RS485 command of master
Distance:	1200M
Terminate Resistor:	150Ω at last unit.
Electrical Safety	
Dielectric Strength:	AC 2.0 KV for 1 min, Between Power / Input / Output / Case
Insulation Resistance:	$\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output
Isolation:	Between Power / Input / Relay, Analogue, RS485
EMC:	EN 55011:2002; EN 61326:2003
Safety(LVD):	EN 61010-1:2001
Environmental	
Operating Temp.:	0~60 ${ }^{\circ} \mathrm{C}$
Operating Humidity:	20~95 \%RH, Non-condensing
Temp. Coefficient:	$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Storage Temp.:	$-10 \sim 70^{\circ} \mathrm{C}$
Enclosure:	Front panel: IEC 529 (IP52); Housing: IP20
Mechanical	
Dimensions:	96mm(W) x 48mm(H) $\times 72 \mathrm{~mm}$ (D)
Panel cutout:	92 mm (W) $\times 44 \mathrm{~mm}$ (H)
Case material:	ABS fire-resistance (UL 94V-0)
Mounting:	Panel flush mounting
Terminal block:	Plastic NYLON 66 (UL 94V-0)
	10A 300Vac, M2.6, 1.3~2.0mm²(16~22AWG)
Weight:	350 g
Power	
Power Supply:	AC115/230V, $50 / 60 \mathrm{~Hz}$;
	Optional: AC 85~264V / DC 100~300V or DC 20~56V
Power Consumption:	3.0VA maximum
Back Up Memory:	By EEPROM

FRONT PANEL

■ DIMENSIONS

■INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

■CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply

FUNCTION DESCRIPTION

Input Functions
Input range：Auto－Range： $0.01 \mathrm{~Hz} \sim 100.00 \mathrm{KHz}($ option 140 KHz ），
The meter has been designed very wide input auto－range from $0.01 \mathrm{~Hz} \sim 100.00 \mathrm{KHz}$（Option： $0.01 \mathrm{~Hz} \sim 140.00 \mathrm{KHz}$ ）that can cover almost any application for RPM，Linear Line Speed and Frequency．User doesn＇t need to specify the input range．
Auto range display：programmable between Auto Range／Semi－Auto Range／
manual range，The description as below，
Auto range RULD：The decimal point will be auto changed according to the input frequency so that keep reading in the highest resolution．
Semi－Auto range $5 E^{-\bar{n}}$ ：：The decimal point will be auto changed according to the input frequency to keep reading in the highest resolution under setting position of decimal point．
according to the setting of decimal point．So，it＇s possible to show＂overflow＂，if the input frequency is over the display range．
Manual range $\overline{\mathrm{hRnLL}}$ ：The decimal point will be fixed

Time out of input：

In the case of low frequency，the meter can not to identify that is low frequency and no input until the next pulse input．Sometimes，it takes a long period．
The meter builds in a time out function to cut out the reading to be＂ 0 ＂． There are two modes F⿵冂⿱一𫝀口iUL／RUto can be programmed．

Manual finill：There is a period named to can be set from $0.0 \mathrm{sec} \sim 999.9 \mathrm{sec}$ ．The reading will display＂ 0 ＂，when the next pulse doesn＇t input during the setting time．
Auto range RUL o：The reading will display＂ 0 ＂，when the next pulse doesn＇t input during the time that gave by formula of meter＇s firmware．
Period of time out：
Settable： $0.0 \mathrm{sec} \sim 999.9 \mathrm{sec}$
If the time out mode［ ，to．nd］set to be $\overline{\mathrm{RAnLL}}$ ，ito will be show out．

Display \＆Functions
Max／Mini recording：The meter will storage the maximum and minimum value in ［ User Level］during power on in order to review drifting of PV．
Display functions：
（Please refer to step A－07）
PV／Max（Mini）Hold／RS 485 programmable in
［dSPLY］function of［inPUt［rouP］

Present Value P_{U} ：The display will show the value that Relative to Input signal．
Maximum Hold 5 Rh． $\mathrm{Hd} /$ Minimum Hold 5 in． Hd ： The meter will keep display in maximum（minimum） value during power on，until manual reset by front key in［ User Level］，rear terminal（ECl）is close or press front down or up key to reset（according．to setting，please functions of refer to the ECI Group）
－Please find the W． dicker that enclosure the package of the meter to stick on the right side of square orange LED

Remote Display by RS485 command－5485：
The meter will show the value that received from RS485 sending．In past，The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC ．We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC．

Relative PV－EL．PU：［dn．LEY］function can be set to be－EL．PU function．When user press the $\nabla_{k e y,}$ the display will show the differential value $(\Delta \mathrm{PV})$ ，until press Ekey again．
Please find the sticker to stick on the right side of square green LED．
PV Hold Pu．HLd ：［dn．LEY］function can be set to be Pu．HLd function．When user press the ∇ key， the display will be hold until press the F key again． －Please find the \quad PIT．sticker to stick on the right side of square green LED．

Reset for Max（Mini）Hold：when the［ SSPL Y］in
［ inPut［roup］set to be hRh．Hd or 5 in．Hd，
［dn．UEY］function can be set to be \bar{n}. ． $5 t$ to reset the display when it is holding in maxim or mini value．
Reset for relay energized latch：when the $[\mathrm{r} \boldsymbol{\mathrm { I }} \mathrm{i} \mathrm{d}]$ in ［rELRY GroUP］set to be H．HLd or Lo．HLd， ［dn．EEY］function can be set to be - y．r St to reset the relay when it is energizing and latching．

Low cut：

If the setting value is positive，it means when the absolutely value of PV \leq Setting value，the display will be 0 ．If the setting value is negative，it means when the PV under setting value（PV $\leq-$ Setting value），the display will be setting value．

Digital fine adjust：

Users can get Fine Adjustment for Zero \＆Span of PV by front key of the meter，and＂Just Key In＂the value which user want to show in the current input signals．
Especially，the［Pu．？ro］\＆［Pu．5Pn］are not only in zero \＆span of PV，but also any lower point for［Pu．？ro］\＆higher point for［Pu．5Pn］．The meter will be linearization for full scale．
The adjustment can be clear in function［P．5．CLr ］

Compensation factor：Settable range：0．001～9．999
The factor is compensation of display．There are some applications that are indirect detection．User can set the factor to compensate the display．

Reading Stable Function

Average：

Basically，the sampling rate of meter is 15 cycles／sec．If the function set to be 3 times，It means the meter will update of display will be 5 times／sec．

Moving average:

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.

Digital filter:

The digital filter can reduce the magnetic noise in field.

Control functions(option)

Relay energized mode:
Hi/ Lo / Hi.HLd / Lo.HLd programmable
H_{1} : Relay will energize when PV > Set-Point
Lo: Relay will energize when PV < Set-Point

Hi.HLd (Lo.HLd): When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [user level] or press down key to reset(If the [dn.LEY] function set to be - Y. 5 5t

Energized functions: Start delay / Energized \& De-energized delay / Hysteresis

Analogue output(option)

Please specify the output type either an o 10V or 4(0)~20mA in ordering The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.

Output range: \quad Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable

 Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable Functions:Ro.HS (output range high): setting the Display value High to versus output range High(as like as 20 mA in 4~20) Ro.L 5 (output range Low): setting the Display value Low to versus output range Low(as like as 4 mA in $4 \sim 20$)

The range between Ro.HS and Ro.LS should be over 20% of span at least; otherwise, it will be got less resolution of analogue output

Fine zero \& span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key(up or down key) of meter to adjust and check the output.
[Ro.3ro]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524;
[Ro .5 P n]: Fine Span Adjustment for Analog Output Settable range: -38011~27524;

RS 485 Communication(option)

The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading

Remote display:

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.

When the [$\triangle 5 P L Y$] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data(number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.
CS1 APPLICATION FOR REMOTE DISPLAY FROM RS485 COMMAND

ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.		
SELF-DIAGNOSIS AND ERROR CODE:		
DISPLAY	DESCRIPTION	REMARK
OuFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)
-ouFL	Display is negative-overflow (Signal is under display range)	(Please check the input signal)
OuFL	ADC is positive-overflow (Signal is higher than input 120\%)	(Please check the input signal)
-ouFL	ADC is negative-overflow (Signal is lower than input -120\%)	(Please check the input signal)
$E E P \Rightarrow F R$ L	EEPROM occurs error	(Please send back to manufactory for repaired)
BIC.n $\Rightarrow \mathrm{Pu}^{\text {c }}$	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)
R, $\sim \Rightarrow F R, L$	Calibrating Input Signal error	(Please check Calibrating Input Signal)
RoL.n $\Rightarrow \mathrm{Pu}^{\text {c }}$	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)
$\mathrm{ROL} \underset{\sim}{4} \mathrm{FR} \mathrm{M}$	Calibrating Output Signal error	(Please check Calibrating Output Signal)

■RONT PANEL:

Numeric Screens
$0.8^{\prime \prime}(20.0 \mathrm{~mm})$ red high-brightness LED for 5 digital present value.

I/O Status Indication

- Relay Energized: 1 square red LED

RL1 display when Relay 1 energized;

- RS485 Communication: 1 square orange LED

COM will flash when the meter is receive or send data, and $\mathbb{C O M}$ flash quickly means the data transient quicker.

- Max/Mini Hold indication: 2 square orange LEDs
[ild displayed: When the display function has been selected in Maximum or Minimum Hold function.
Stickers:
Each meter has a sticker what are functions and engineer label enclosure.
- Relay energized mode: [H LI LO LL DO
- Down key functions mode:

PIU PV.H(PV Hold) / Tare / DI DI(Digital Input)
UII.R M.RS(Maximum or Minimum Reset) /
R.RS R.RS(Reset fo Relay Latch)

- Engineer Label: over 80 types.

Uup key / PDown key

	Setting Status	Function Index
QUp key	Increase number	Go back to previous function index
QDown key	Decrease number	Go to next function index
Shift key	Shift the setting position	Go back to this function index, and abort the setting
Qind		
Enter/Fun	Setting Confirmed and save to EEProm	From the function index to get into setting status

- Pass Word: Settable range:0000~9999;

User has to key in the right pass word so that get into [Programming level]. Otherwise, the meter will go back to measuring page. If user forget the password, please contact with the service window.
Function Lock: There are 4 levels programmable.

- None nonE: no lock all.
- User Level USEr: User Level lock. User can get into User Level for checking but setting.
- Programming Level EnEl: Programming level lock. User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
Front Key Function:
 programmable.
\square OPERATING DIAGRAM（The detail description of operation，Plesae refer to operating manual）

Power ON		User Operation Level		
8．8．8．8．8	Self－diagnosis	Press for 1 sec．can back to Measuring		
\downarrow 退				
$\frac{[51-1}{1}$	Show the model number			
	Show the firmware version		ก月4：the Maximum value of PV saving Checking only	Cyclic to first page
	MEASURING PAGE Press ${ }^{-1} 1 \mathrm{sec} \rightarrow$ \leftarrow Press晏1sec	 r．r．St：Reset for energized Latch of Relay YES \square	$\bar{n} . r 5 t$ ：Reset the saved value of Maximum \＆ Minimum YES／ \square	
PntEr ${ }_{\text {Pode }}^{\text {pac }}$	Enter the password to access Engineer Level			
	Programming Level			
YES \downarrow Default：1000	Press \square for 1 sec．can back to Measuring			
InPULIN	INPUT	－rELRら RELAY	$\vec{\nabla}$ Ro ANALOGUE	匃 5485 RS485
Group 可 \downarrow	GROUP			四（1）Gid GROUP
	If［Pu．tyP］has been selected 4 ？ or EHF，This function will be hidden P．P．r： Pulse／rotation 1～99999			
	If［Pu．t YP］has been selected n．5Pd，This function will be showed out E．Un it： Engineer Unit 			畼】 1园
	If［Putyp］has been selected n． 5 Pd，This function will be showed out d R．n．t．： Diameter 0．0001～9．9999M	7 \square ry IHY：Relay 1 Hysteresis \square $0 \sim 5000$ counts	$\underset{1}{7}$ \square 1 Ro．？ro：Fine Zero Adjustment for Analogue Low Output －38011～27524	
	dP：Decimal Point of set－point 0～0．0000	0 0.00 .1 \square ry ird：Relay 1 energized delay －乌ird time 0．00．0～ E！ 9（M）．59．9（S）		
	FRCtr： Compensation Factor $0.001 ~ 9.999$	ry ifd：Relay 1 de－energized delay time 0．00．0～ 9（M）．59．9（S）		

Plesae refer to operating manual for detail description.

