CS2-VA VOLT / CURRENT Meter

■ DESCRIPTION

CS2-VA Voltage/Current Indicator has been designed with high accuracy measurement, display and communication of $0 \sim 600 \mathrm{~V}$ or 0~10A for DC/AC/TMRS.
\square Adtek builds flexible function as like as 3 bank (for multi-range scaling and set point) and 3 external control inputs meet to various testing equipment inquiry.
They are also build in 4 Relay outputs, 3 External Control Inputs, 1
 Analogue output and 1 RS485 (Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission and communication for a wide range of industrial applications.

■ FEATURE

- Measuring Voltage 0~600V or Current 0~10A for DC / AC / TRMS
- Optional 4 banks pre-set for all relay functions are relative to 4 difference scaling, and selectable by 3

External Control Inputs(E.C.I.) or front key

- 4 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch / Go energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions, or to be a remote control.
- Analogue output and RS 485 communication port in option
- 3 external control inputs can be programmed individual to be Relative PV (Tare) / PV Hold / Maximum or Minimum Hold / DI (remote monitoring) / Reset for Relay Energized Latch....
- CE Approved \& RoHS

■ APPLICATIONS

- Testing Equipments for Volt/Current Measuring, Alarm, Control and Communication with PC/PLC \square Flexible 3 DI functions as like as Maximum/Minimum hold, PV hold and Relative PV. ஏ 4 Relay functions as like as $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Go}$ with on and off delay time from 0.0(s)~ 9(m):59.9(s) च 3 Banks preset for individual Hi / Lo scale, decimal point and 4 relay energized level and functions.
- MCC panel, Machinery, Switch gear... for Voltage or Current Measuring, Alarm and Remote I/O with PC/PLC V Fantastic 4 Relay functions as like as $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Hi}$ latch / Lo latch / DO(Remote control by PC/PLC).
\quad Flexible 3 DI functions as like as Reset for Relay energized and Remote monitoring by PC/PLC.

ORDERING INFORMATION

Input					
Measuring Range DC / AC / TRMS		Input Impedance	Measuring Range DC / AC / TRMS		Input Impedance
Voltage	$0 \sim 50 / \sim 100 \mathrm{mV}$	$\geq 5 \mathrm{M} \mathrm{ohm}$	Current	0~199.99 A	1 K ohm
	$0 \sim 199.99 \mathrm{mV}$	$\geq 5 \mathrm{M}$ ohm		0~1.9999 mA	100 ohm
	0~1.9999 V	$\geq 1 \mathrm{M} \mathrm{ohm}$		0~19.999 mA	10 ohm
	0~19.999 V	$\geq 1 \mathrm{M} \mathrm{ohm}$		0~199.99 mA	1 ohm
	$0 \sim 199.99 \mathrm{~V}$	$\geq 1 \mathrm{M}$ ohm		0~1.9999 A	0.05 ohm
	$0 \sim 300.0 \mathrm{~V}$	$\geq 2 \mathrm{M}$ ohm		$0 \sim 5.000 \mathrm{~A}$	0.02 ohm
	$0 \sim 600.0 \mathrm{~V}$	$\geq 2 \mathrm{M}$ ohm		0~10.000 A	0.01 ohm

Calibration: A/D converter: Accuracy: Sampling rate: Response time: Input range:

Digital calibration by front key 16 bits resolution
DC: $\leq \pm 0.04 \%$ of $F S \pm 1 C$
$A C: \leq \pm 0.1 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$
15 cycles/sec
$\leq 100 \mathrm{msec}$.(when the AvG = " 1 ") in standard
Input High and Low programmable
R .H : Settable range: $0.00 \sim 100.00 \%$ of input range
R .Lo: Settable range: $0.00 \sim 100.00 \%$ of input range
Display \& Functions
LED:

Display range:
Scaling function:
Decimal point:
Banks function:
Over range indication: Under range indication: Max / Mini recording: Display functions: Front key functions: Low cut:
Digital fine adjust:
-19999~29999;
Lo.5C : Low Scale; Settable range: -19999~+29999 H .SC: High Scale; Settable range: -19999~+29999 Programmable from $0 / 0.0 / 0.00 / 0.000 / 0.0000$ Extra 3 banks programmable for scaling \& decimal point ouFL , when input is over 20% of input range Hi - ouFL, when input is under -20% of input range Lo Maximum and Minimum value storage during power on. PV / Max(Mini) Hold / RS 485 Programmable Up and down key can be set to be a function as ECI. Settable range: -19999~29999 counts Pu.アro: Settable range: -19999~+29999 Pu.5Pn: Settable range: -19999~+29999

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) $/ \sim 10$ times
Digital filter:	Settable range: $0($ None $) / 1 \sim 99$ times

Control Functions(option)

Set-points:	Four set-points
Control relay:	Four relays
	Relay 2 \& Relay 3: Dual FORM-C, 5A/230Vac, 10A/115V
	Relay 1 \& Relay 4: Dual FORM-A, 1A/230Vac, 3A/115V
Banks pre-set:	4 banks pre-set for all relay functions to relative 4 difference scaling, and selectable by 3 External
	Control Inputs(E.C.I.) Or front key
Relay energized mode:	Energized levels compare with set-points:
	Hi / Lo / Go. 12 / Go. 23 / Hi.HLd / Lo.HLd; programmable
	DO function: Energized by RS485 command of master.
Energizing functions:	Start delay / Energized \& De-energized delay / Hysteresis / Energized Latch
	Start band(Minimum level for Energizing): 0~9999counts
	Start delay time: 0:00.0~9(Minutes):59.9(Second)
	Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second)
	De-energized delay time: $0.00 .0 \sim 9($ Minutes):59.9(Second)
	Hysteresis: $0 \sim 5000$ counts

External Control Inputs(ECI)

Input mode:	3 ECl points, Contact or open collect input, Level trigger
Functions:	Relative PV(Tare) / PV Hold / Reset for Max or Mini. Hold /
	DI / Reset for Relay Energized latch / Banks selection

Analogue output(option)

Accuracy:	$\leq \pm 0.1 \%$ of F.S.; 16 bits DA converter
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{msec}$. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Output capability:	Voltage: $0 \sim 10 \mathrm{~V}: \geq 1000 \Omega$; Current: 4(0) $20 \mathrm{~mA}: \leq 6000$ max
Functions:	Ro.HS (output range high): Settable range: -19999~29999
	Ro.L S (output range Low): Settable range: -19999~29999
	Ro.L $\overline{\text { nt }}$ (output High Limit): $0.00 \sim 110.00 \%$ of output High
Digital fine adjust:	Ro.アro: Settable range: -38011~+27524
	Ro. 5 ¢ n : Settable range: -38011~+27524
RS 485 Communic	n(option)
Protocol:	Modbus RTU mode
Baud rate:	1200/2400/4800/9600/19200/38400 programmable
Data bits:	8 bits
Parity:	Even, odd or none (with 1 or 2 stop bit) programmable
Address:	$1 \sim 255$ programmable
Remote display:	to show the value from RS485 command of master
Distance:	1200M
Terminate resistor:	150Ω at last unit.

Electrical Safety
Dielectric strength: AC 2.0 KV for 1 min, Between Power / Input / Output / Case

Insulation resistance:	$\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output
Isolation:	Between Power / Input / Relay / Analogue / RS485 / E.C.I.
EMC:	EN 55011:2002; EN 61326:2003
Safety(LVD):	EN 61010-1:2001
Vibration:	$1 \sim 800 \mathrm{~Hz}, 3.175 \mathrm{~g}^{2} / \mathrm{Hz}$
Environmental	
Operating temp.:	0~60 ${ }^{\circ} \mathrm{C}$
Operating humidity:	20~95 \%RH, Non-condensing
Temp. coefficient:	$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Storage temp.:	$-10 \sim 70^{\circ} \mathrm{C}$
Enclosure:	Front panel: IEC 549 (IP54); Housing: IP20
Mechanical	
Dimensions:	$96 \mathrm{~mm}(\mathrm{~W}) \times 48 \mathrm{~mm}(\mathrm{H}) \times 120 \mathrm{~mm}$ (D)
Panel cutout:	92 mm (W) $\times 44 \mathrm{~mm}$ (H)
Case material:	ABS fire-resistance (UL 94V-0)
Mounting:	Panel flush mounting
Terminal block:	Plastic NYLON 66 (UL 94V-0)
	\#A1~A3(current input): 20A/300Vac, M3.5, 12~22AWG Others: 10A 300Vac, M2.6, 16~22AWG
Weight:	$550 \mathrm{~g} / 350 \mathrm{~g}$ (Aux. Power Code: ADH or ADL)
Power	
Power supply:	AC115/230V, $50 / 60 \mathrm{~Hz}$;
	Optional: AC 85~264V / DC 100~300V or DC 20~56V
Power consumption:	5.0VA maximum
Back up memory:	By EEPROM

FRONT PANEL

DIMENSIONS

INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply

Input connection

RS485 Communication Port

FUNCTION DESCRIPTION

Input \& Scaling Functions
Input range:
Analogue input High and Low programmable
The meter has to be specified and fixed according to ordering code (ex. $0 \sim 10 \mathrm{~A}$ or $0 \sim 300 \mathrm{~V}$) in factory. If the meter has to install in difference range of input, the meter can be set in function [$\mathrm{R} . \mathrm{Lo}$] and [$\mathrm{R}_{\mathrm{H}} . \mathrm{H}_{1}$] of input group to meet the input signal.
For example: The meter is 0~10Aac input, and the signal from sensor is $0 \sim 5 A a c$. Please get into [inPUt [rould to set [R, H,] (Analogue input high) to be $50.00 \%(10 \mathrm{~A} \times 50.00 \%=5 \mathrm{~A})$, then the meter has been changed the input range to $0 \sim 5 \mathrm{~A}$ and the all relative parameters will work base on 0~5A. The meter doesn't need re-calibration after change the [R , Lo ol and [$\mathrm{A} . \mathrm{H}_{1}$] .

Default Input:
[R A.Lo]: 0000%, [R .H .]: 100.00%
[Lo.SC]: 0.00 , [H .5[]: 100.00
Change to [A , Lod: 20.00 \%, [R .H ,]: 100.00%

*The setting may course display lower resolution. Please set lower resolution when the input signal has been high compressed.

Scaling function:
Setting the Lo.SC(Low scale) and Hi.SC(High scale) in【inPUt GroUP】 to relative input signal. Reverse scaling will be done too. Please refer to the figure as below,

*Too narrow scale may course display lower resolution.

Display \& Functions

Max / Mini recording: The meter will storage the maximum and minimum value in [User Level] during power on in order to review drifting of PV.
Display functions: PV / Max(Mini) Hold / RS 485 programmable in [$d 5 P L Y$]
(Please refer to step A-09) function of [inPUt GrouP]
Present Value P_{U} : The display will show the value that Relative to Input signal.
Maximum Hold $\mathrm{F} 4 \mathrm{Hd} /$ Minimum Hold $\overline{\text { nn .Hd }: ~ T h e ~ m e t e r ~}$ will keep display in maximum(minimum) value during power on, until manual reset by front key in [User Level], rear terminal is close [External Control Input(E.C.I.)] or press front down or up key to reset (according. to setting, please functions of refer to the ECI Group)
Please find the \quad Didicker that enclosure the package of the meter to stick on the right side of square orange LED

Remote Display by RS485 command -5485: Themeter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC . We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.
PV Hold Pu.HLd: [External Control Input(E.C.I.)] can be set to be Pu.HLd function(Please refer to the function of ECI Group). The display will be hold, when the E.C.I. is closed.

- Please find the ECI PNIIsticker to stick on the right side of square green LED.

PV Hold \& Reset

 will show he vaster normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from

If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the PV under setting value(PV $\leq-$ Setting value), the display will be setting value.

Digital fine adjustment:

Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals. Especially, the [Pu. Pr_{r}] \& [Pu.5Pn] are not only in zero \& span of PV, but also any lower point for [Pu. P rol \& higher point for $[\mathrm{Pu} .5 \mathrm{P} \mathrm{n}$]. The meter will be linearization for full scale. The adjustment can be clear in function [P.S.CLr]

Reading Stable Function

Average:
Basically, the sampling rate of meter is 15 cycles $/ \mathrm{sec}$. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.
Average set to be 3

Moving average:

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.

Moving Average set to be 3

Sample 1|Sample 2|Sample 3|Sample 4|Sample 5SSample 6 .
$\underbrace{\text { I }}_{\text {In first } 3 \text { samples, Display Update Value }}$
$=($ Sample $1+$ Sample $2+$ Sample 3) $/ 3$
i $\underbrace{i}_{\text {Display Update Value }}$
= (Sample $2+$ Sample $3+$ Sample 4)/3
$\underbrace{\text { Display Update Value }}$
= (Sample $3+$ Sample $4+$ Sample 5)/3
Display Update Value
$=($ Sample $4+$ Sample $5+$ Sample 6)/3
Digital Filter:
The digital filter can reduce the magnetic noise in field.

Control Functions(option)

Relay energized mode: Hi/ Lo / Hi.HLd / Lo.HLd / do / Go-1.2 / Go-2.3 programmable
Hi H I(Fig.1-(1)): \quad Relay will be energized when $\mathrm{PV}>$ Set Point
Lo Lo(Fig.1-(2): Relay will be energized when PV < Set Point

Go-1.2 To- I.2: \quad This function is programmable in Relay 4 only.
If the Relay 4 set to be Go function, the relay will compare with [r Y :.5P] and [r Y..5P]
Go relay energized when the condition is
$[r y: 5 \mathrm{P}]$ (Hi) > PV > [r Y 2.5P](Lo)
Go-2.3 To-ट.3:. This function is programmable in Relay 4 only.
If the Relay 4 set to be Go function, the relay will compare with [r Y 2.5P] and [r Y 3.5P]
Go relay energized when the condition is
[ry2.5P](Hi) > PV > [r Y 3.5P](Lo)
Hi.HLd HL
(Lo.HLd o.HLd)
When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [User Level], [External Control Input(E.C.I.)] is closed or Press front down or up key to reset (UP Key or Down Key functions have been set to be "YES").

DO function do: Energized by RS485 command of master.
The function was designed to get remote control by RS485 command of master. The typical application is to control a switch in field from computer center as like as digital output(DO) of PLC.
Energized Functions: Start delay / Energized \& De-energized delay / Hysteresis

External Control Inputs(ECI)

The three external control inputs are individually programmable to perform specific meter control or display functions. All E.C.I. have been designed in level trigger actions. Please pay attention, the ECI1 or ECI2 input will be disable while UP or Down Key has been set to be "YES".
Functions:
Relative PV / PV Hold / Reset Max or Mini. Hold / DI / Reset for Relay Energized latch / banks selection (option) programmable.
Relative PV -EL.Pu: or Tare PV Hold Pu.HLd:

The E.C.I. can be set to be -EL.P is closed, the reading will show the differential value. The E.C.I. can be set to be Pu.HLD function. The display will be hold when the E.C.I. is closed, until the E.C.I. is to be open. Please refer to the below figure.

Reset for Maximum or Minimum Hold $\overline{\operatorname{nor} 5 t}$:
When the [dSPL Y] function in [inPUt [rouP] selected $\overline{\mathrm{BR}} \mathrm{H} \mathrm{Hd}$ or 5 n Hd , the display will show Maximum or Minimum value, and can be reset by the E.C.I (close). Please refer to the figure as below.

The E.C.I can be set to be \qquad d_{1} function, when the meter building in RS485 port. It is easier to get remote monitoring a switch status through the meter as like as DI of PLC

Reset for Relay
Energized Latch:

If relay energized mode has set to be Energized latch (H.HL / / o.HLd), the E.C.I. can be set to be ry.r 5 . When the PV meets the condition of relay energizing, the relay will be energized and latch until the E.C.I. is closed.

Debouncing time:

The function is for avoiding noise signal to into the meter. And The basic period is 8 mseconds. It means you set the number that has to multiple 8 mseconds.
For example: $[d E \mathrm{~b} \cap \mathrm{C}$]set to be 5 , it means $5 \times 8 \mathrm{mseconds}=40 \mathrm{mseconds}$

Analogue output(option)

Please specify the output type either an $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ in ordering The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.

Output range:

Functions:

output range high
[Ro.HS]:
output range low
[Ro.l 5]:

Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable Output High / Low scale, output limit, fine adjustment To setting the Display value High to versus output range High(as like as 20 mA in 4~20) To setting the Display value Low to versus output range Low(as like as 4mA in 4~20)

The range between [Ro.H5] and [Ro.L 5] should be over 20% of span at least; otherwise, it will be got less resolution of analogue output
output High Limit [RoLnt]:
$0.00 \sim 110.00 \%$ of output High User can set the high limit of output to avoid a damage of receiver or protection system.

Fine zero \& span adjustment:
Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key(up or down key) of meter to adjust and check the output.
AO Zero [Ro.? ${ }^{\text {rod }}$]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524
AO Span [Ro. $5 \mathrm{P}_{\mathrm{n}}$]: Fine Span Adjustment for Analog Output; Settable range: -38011~27524;

RS 485 communication(option)
The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's not only convenience to remote monitoring, display for reading and ECI status, but also for remote control in the case that doesn't have any DIO device in the field.

Remote Display:

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.
When the [$\mathrm{dSPL} \mathcal{S}$] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data(number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.
CS2 APPLICATION FOR REMOTE DISPLAY FROM RS485 COMMAND

Calibration
System calibration by front key. The process of calibration, please refer to the operating manual

Optional Function

Customize function with quantities is welcome. Please contact with our sales for detail. The appendix code of optional function will be add behind the code of auxiliary power as like as xxx-A-HSM.

Banks function: (appendix code: -3BK)

- The function is for CS2 to control difference process with a same meter.
- For example; A pressure testing equipment; it has to measure multi-range with difference pressure transducers. The meter can be pre-set 4 groups parameter to show difference scale and relay energized in difference set-points. The operator just selects the bank number (bank1) by [External Control Input(ECI)] or front key operating in [User Level] to meet the process. To make easier operating and to avoid mistake in process.

ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.
SELF-DIAGNOSIS AND ERROR CODE:

DISPLAY	DESCRIPTION	REMARK
OuFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)
-ouFl	Display is negative-overflow (Signal is under display range)	(Please check the input signal)
OUFL	ADC is positive-overflow (Signal is higher than input 120\%)	(Please check the input signal)
-ouFl	ADC is negative-overflow (Signal is lower than input -120\%)	(Please check the input signal)
EEP $\quad ¢ \mathrm{FR} \mathrm{L}$	EEPROM occurs error	(Please send back to manufactory for repaired)
R IL.пE $¢ \mathrm{Pu}^{\text {L }}$	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)
R,L \Rightarrow FR L	Calibrating Input Signal error	(Please check Calibrating Input Signal)
RoL.nE $\Rightarrow \mathrm{Pu}^{\text {L }}$	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)
RoL \Rightarrow FR L	Calibrating Output Signal error	(Please check Calibrating Output Signal)

■ FRONT PANEL:

Numeric Screens
$0.8^{\prime \prime}(20.0 \mathrm{~mm})$ red high-brightness LED for $42 / 3$ digital present value.
$\square_{\text {I/O Status Indication }}$

- Relay Energized: 4 square red LED

RL1 display when Relay 1 energized;
RL2 display when Relay 2 energized;
RL3 display when Relay 3 energized;
RL4 display when Relay 4 energized;

- External Control Input Energized: 3 square green LED

ECO11 display when E.C.I. 1 close(dry contact)
EC12 display when E.C.I. 2 close(dry contact)
ECl3 display when E.C.I. 3 close(dry contact)

- RS485 Communication: 1 square orange LED

COM will flash when the meter is receive or send data, and COM flash quickly means the data transient quicker.

- Max/Mini Hold indication: 2 square orange LEDs
- displayed: When the display function has been selected in Maximum or Minimum Hold function.
Stickers:
Each meter has a sticker what are functions and engineer label enclosure.
- Relay energized mode: 4 TH LD LL D D
- E.C.I. functions mode:

PIH PV.H(PV Hold) / Tare Tare / DD DI(Digital Input)
W.RS M.RS(Maximum or Minimum Reset) /
B.IS R.RS(Reset fo Relay Latch)

- Engineer Label: over 80 types.

Operating Key: 4 keys for Up key / ∇ Down key		
	Setting Status	Function Index
\square Up key	Increase number	Go back to previous function index
Down key	Decrease number	Go to next function index
Shift key	Shift the setting position	Go back to this function index, and abort the setting
Qininderter/Fun key	Setting Confirmed and save to EEProm	From the function index to get into setting status

- Pass Word P.CodE: Settable range: 0000~9999; User has to key in the right pass word so that get into 【 Programming Level 】. Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with the service window.
Function Lock: There are 4 levels programmable.
- None nonE: no lock all.
- User Level USEr: User Level lock. User can get into User Level for checking but setting.
- Programming Level Enf: Programming level lock. User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
$\square_{\text {Front Key Function }}$
- The \square Key can be set to be the same function as the setting of ECI1. Ex. The ECI1 set to be Pu.HLd and the function [E. $1=U P$] set to be $4 E 5$ in [E[, Groulp]. When user presses BKey, the PV will hold as like as ECl1 close.
- The Rey can be set to be the same function as the setting of ECI2. Ex. The ECI2 set to be ELL.P and the function [E. $2=\mathrm{d} n$] set to be $4 E 5$ in [E[, Group]. When user presses TKey, the PV will show relative value as like as ECl 2 close.
- If the front key function has been set, the terminal input for ECI will be disabling.

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Plesae refer to operating manual for detail description
Plesae refer to operating manual for Banks function description and operating.

