

DS1200HE 1200 Watts Distributed Power System

Data Sheet

Front-end Bulk Power Total Output Power: 180 to 264 Vac: 1200 W continuous 90 to 140 Vac: 1000 W/ 1200 W¹ continuous

SPECIAL FEATURES

- 1200 W output power
- High power
- 1U x 2U power supply
- High density design: 21.66 W/in³
- Active Power Factor Correction
- EN61000-3-2 Harmonic compliance
- Inrush current control
- 80plus Platinum efficiency
- N+1 or N+N redundant
- Hot plug operation
- N + 1 redundant
- Active current sharing
- Full Digital control
- PMBus compliant
- Input power reporting
- Compatible with Artesyn's Universal PMBus GUI
- Reverse airflow option
- Two-year warranty

COMPLIANCE

- Conducted/Radiated EMI Class B
- RoHS

SAFETY

- UL/cUL 60950 (UL Recognized)
- NEMKO+ CB Report EN60950
- CE Mark
- China CCC

Electrical Specifications

Input		
Input voltage range	90 - 140 Vac: 1000 W/1200 W ¹ 180 - 264 Vac: 1200 W	
Frequency	47 Hz to 63 Hz	
Efficiency	94.0% peak	
Max input current	15 Arms	
Inrush current	55 Apk at 240 Vac, cold start	
Conducted EMI	Class B	
Radiated EMI	Class B	
Power factor	0.9 typical	
ITHD	10%	
Leakage current	1.4 mA	
Hold-up time	12 ms	

1 1000 W at forward air, 1200 W at reverse air. See power derating table

16

Ordering Information		
DS1200HE-3	12 V / 100 A, 3.3 Vsb / 6 A, standard airflow	
DS1200HE-3-002	12 V / 100 A, 5.0 Vsb / 4 A, standard airflow	
DS1200HE-3-003	12 V / 100 A, 3.3 Vsb / 6 A, reverse airflow	
DS1200HE-3-004	12 V / 100 A, 5.0 Vsb / 4 A, reverse airflow	

An Advanced Energy Company

Electrical Specifications

Output			
Main DC Output	MIN	NOM	MAX
Nominal setting	-0.50%	12	0.50%
Total output regulation range	11.4 V		12.6 V
Dynamic load regulation range	11.4 V		12.6 V
Output ripple			120 mVp-p
Output current	0 A4		100.0 A
Current sharing		Within ±5% of full load ratin	
Capacitive loading	2,000 uF		40,000 uF
Start-up from AC to output			2000 ms
Output rise time	5 ms		50 ms
Standby DC Output (VSB)			
Output setpoint range	-1%	3.3 V (5.0 V)	1%
Total output regulation range	+5%		-5%
Dynamic load regulation range	+5%		-5%
Output ripple			50 mVp-p
Output current	0		6.0 A (4 A)
Current sharing		N/A	
Capacitive loading	0 uF		680 uF
Start-up from AC to output			1000 ms
Output rise time	2 ms		50 ms
Protections			
Main Output			
Overcurrent protection ²	120%		150%
Overvoltage protection ¹	13.5 V		15.0 V
Undervoltage protection	10.5 V		11.0 V
Overtemperature protection		Yes	
Fan fault protection		Yes	
Standby Output			
Overcurrent protection ³			
Overvoltage protection ³			

¹ Latch mode
² Autorecoverys if the overcurrent is less than 130% and last only for <1000 ms. Otherwise, latch mode
³ Standby protection is auto-recovery
⁴ For output transient testing, the minimum load shall be at 10 A

Control and Status Signals

Input Signals

PSON_L

Active LOW signal which enables/disables the main output. Pulling this signal LOW will turn-on the main output. A 100pF decoupling capacitor is recommended at the system side.

		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V _{IH}	Input logic level HIGH	2.0 V	5.0 V
I _{SOURCE}	Current that may be sourced by this pin		2 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.5 mA

PSKILL_L

First break/last mate active LOW signal which enables/disables the main output. This signal will have to be pulled to ground at the system side with a 220 ohm resistor. A 100 pF decoupling capacitor is also recommended.

		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V _{IH}	Input logic level HIGH	2.0 V	5.0 V
I _{SOURCE}	Current that may be sourced by this pin		2 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.5 mA
VSENSE+, VSENSE-, STBY_VSENSE+			

VSENSE+, VSENSE-, and STBY_VSENSE+ lines are the remote sense lines for regulation. Each line will compensate for a maximum of 100 mV.

Output Signals

ACOK_L

Signal used to indicate the presence of AC input to the power supply. A logic level HIGH will indicate that the AC input to the power supply is within the operating range while a logic level LOW will indicate that AC has been lost.

This is an open collector/drain output. This pin is pulled high by a 1.0 kohm resistor connected to 3.3 V inside the power supply. It is recommended that this pin be connected to a 100 pF decoupling capacitor and pulled down by a 100 kohm resistor at the system side.

		MIN	MAX
V _{IL}	Output logic level LOW		0.6 V
V _{IH}	Output logic level HIGH	2.0 V	5.0 V
ISOURCE	Current that may be sourced by this pin		3.3 mA
I	Current that may be sunk by this pin at low state		0.7 mA

PWR_GOOD / PWOK_H

Signal used to indicate that main output voltage is within regulation range. The PWR_GOOD signal will be driven HIGH when the output voltage is valid and will be driven LOW when the output falls below the under-voltage threshold.

This signal also gives an advance warning when there is an impending power loss due to loss of AC input or system shutdown request. More details in the Timing Section. This is an open collector/drain output. This pin is pulled high by a 1.0 kohm resistor connected to 3.3 V inside the power supply. It is recommended that this pin be connected to a 100 pF decoupling capacitor and pulled down by a 10 kohm resistor.

		MIN	MAX
V _{IL}	Output logic level LOW		0.8 V
V _{IH}	Output logic level HIGH	2.0 V	5.0 V
ISOURCE	Current that may be sourced by this pin		3.3 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.7 mA

Control and Status Signals

Output Signals

PS_PRESENT

Signal used to indicate to the system that a power supply is inserted in the power bay. This pin is connected to ground via a 220 ohm resistor within the power supply

I I I I I I

PS_INTERRUPT

Active low signal used by the power supply to indicate to the system that a change in power supply status has occurred. This event can be triggered by faults such as OVP, OCP, OCP, OTP, and fan fault. This signal can be cleared by a CLEAR_FAULT command. A 100pF decoupling capacitor is recommended.

		MIN	MAX
V _{IL}	Output logic level LOW		0.8 V
V _{IH}	Output logic level HIGH	2.0 V	5.0 V
ISOURCE	Current that may be sourced by this pin		4 mA
I _{SINK}	Current that may be sunk by this pin at low state		4 mA

BUS Signals

ISHARE

 $V_{\rm H}$

Bus signal used by the power supply for active current sharing. All power supplies configured in the system for n+n sharing will refer to this bus voltage inorder to load share.

Voltage Range	The range of this signal for active sharing will be up to 8.0 V, which corresponds to the maximum output current.		
		MIN	MAX
I _{SHARE} Voltage	Voltage at 100% load, stand-alone unit	7.65	8.35
	Voltage at 50% load, stand-alone unit	3.65	4.35
	Voltage at 0% load, stand-alone unit	0	0.5
ISOURCE	Current that may be sourced by this pin		160 mA
SCL, SDA			
Clock and data signals defined as per I ² C requirements. It is recommended that these pins be pulled-up to a 2.2 kohm resistor to 3.3 V and a 100 pF decoupling capacitor at the system side.			
	MIN MAX		
V	Logic level LOW		0.8 V

Note:	All signal	noise levels	are below	400 mVpk-p	ik from 0 - 1	100 MHz.

Electrical Specifications		
LED Indicators		
A single bi-color LED is used to indicate the power supply	status.	
	Status LED	
No AC input to PSU	Off	
AC present, STBY ON, main output OFF	Blinking GREEN	
Main output ON	Solid GREEN	
Over-voltage/Under-voltage failure	Blinking AMBER	
Power supply failure (OVP, OTP, FAN FAULT)	Solid AMBER	

Logic level HIGH

I²C Addressing Table

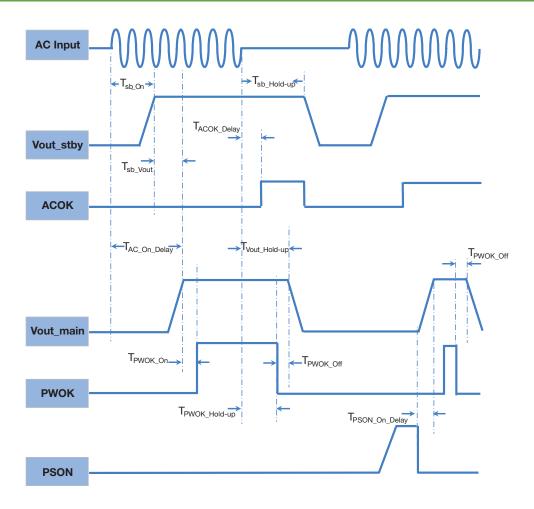
5.0 V

2.0 V

PMBUS ADDRESSING				
A1	A0	Address		
LOW	LOW	0 x B0		
LOW	HIGH	0 x B2		
HIGH	LOW	0 x B4		
HIGH	HIGH	0 x B6		

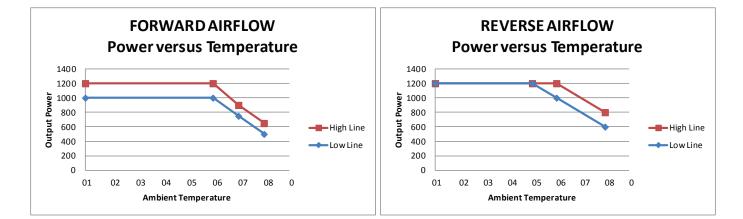
Firmware Reporting And Monitoring						
		MIN/MAX				
Output loading	5 to 20%	20% to 50%	50% to 100%			
Input voltage	±5%					
Input current	±0.7 A fixed error	±5%				
Input power	±10 W at <125 W input	±5%				
Output voltage	±4%					
Output current	0.5 A fixed error	±5%				
Temperature	±5 degC on the operating range					
Fan speed	Actual ±250 RPM					

PMBus	YES
Remote ON/OFF	YES

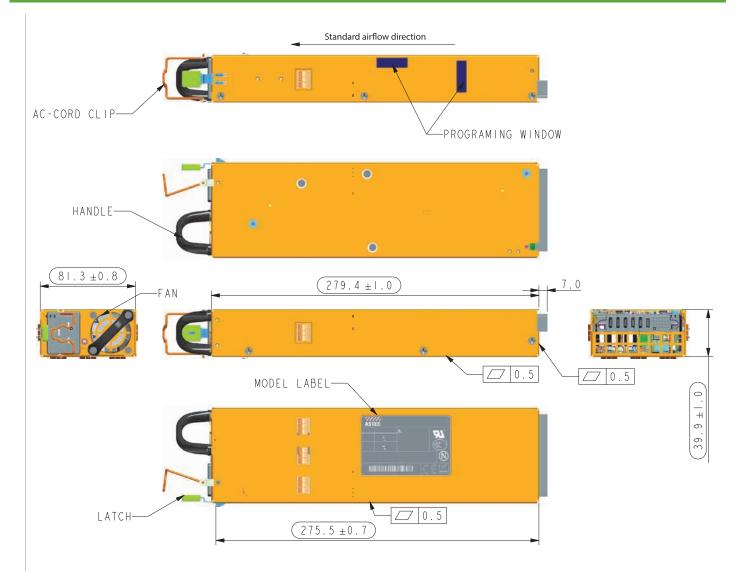

Timing Specifications							
	Description	Min	Мах	Unit			
T _{sb_On}	Delay from AC being applied to standby output being within regulation		1700	ms			
T _{AC_On_Delay}	Delay from AC being applied to main output being within regulation		2000	ms			
T _{PWOK_On}	Delay from output voltages within regulation limits to PWOK asserted	100	1000	ms			
T _{ACOK_Delay}	Delay from loss of AC to assertion of ACOK	7	14	ms			
T _{PWOK_Hold-up}	Delay from loss of AC to deassertion of PWOK	11		ms			
T _{Vout_Hold-up}	Delay from loss of AC to main output being within regulation	12		ms			
T _{sb_Hold-up}	Delay from loss of AC to standby output being within regulation	400		ms			
T _{PWOK_Off}	Delay from deassertion of PWOK to output falling out of regulation	1		ms			
T _{PSON_On_Delay}	Delay from PSON assertion to output being within regulation		350	ms			
T _{PWR_GOOD_Off}	Delay from deassertion of PWOK to output falling out of regulation	1		ms			
T _{PSON_On_Delay}	Delay from PSON assertion to output being within regulation		350	ms			

Environmental Specifications					
Operating temperature	-10 to 50 °C, can provide derated power up to 70 °C. See power derating curve				
Operating altitude	Up to 10,000 feet				
Operating relative humidity	10% to 90% non-condensing				
Non-operating temperature	-40 to +85 °C				
Non-operating relative humidity	10% to 95% non-condensing				
Non-operating altitude	Up to 50,000 feet				
Vibration and shock	Standard oprating/non-operating random shock and vibration				
ROHS compliance	Yes				
MTBF	200,000 hours using Bell Core TR-332, issue 6 specification, Method 1 Case 3 at 25 degC ambient at full load.				
Operating life	Minimum of 5 years				
Reliability	All electronic component derating analysis and capacitor life calculation is done as per Artesyn Network Power standards. The QAV report will be available upon request.				

100 million 100



Timing Diagram



Power Derating Curve

Mechanical Specifications

Mechanical Specifications

DC Output Connector Pinout Assignment

Male connector as viewed from the rear of the supply:

D1	D2	D3	D4	D5	D6							
C1	C2	C3	C4	C5	C6		PB2	PB3	PB4	PB5	PB6	
B1	B2	B3	B4	B5	B6	PB1	РЫ	PD2	PDJ	PD4	PBD	PBO
A1	A2	A3	A4	A5	A6							

Po	ower Supply Side					
1.	FCI Power Blade 51721 series 51721-10002406AA					
2.	Molex Power Connector SD-87667 series 87667-7002					
M	Mating Connector (System Side)					
1.	FCI Power Blade 51741-10002406CC Straight Pins					
2.	FCI Power Blade 51761-10002406AALF Right Angle					
З.	Any other approved equivalent					

Pin Assignments					
Pin	Signal Name				
PB1	Main output return				
PB2	Main output return				
PB3	Main output return				
PB4	+ Main output				
PB5	+ Main output				
PB6	+ Main output				
A1	PSON_L				
A2	Main output remote sense return, VSENSE-				
A3	Spare				
A4	PS_PRESENT				
A5	STAND-BY, +VSB				
A6	STAND-BY RETURN, -VSB				
B1	ACOK_H (AC Input Present)				
B2	Main output remote sense, VSENSE+				
B3	ISHARE				
B4	PS_INHIBIT / PSKILL_LI				
B5	STAND-BY				
B6	STAND-BY RETURN				
C1	SDA (I²C Data Signal)				
C2	SCL (I ² C Clock Signal)				
C3	POWER GOOD/ PWOK_H				
C4	Spare				
C5	STAND-BY, +VSB				
C6	STAND-BY RETURN				
D1	A0 (I ² C Address BIT 0 Signal)				
D2	A1 (I ² C Address BIT 1 Signal)				
D3	PS_INTERRUPT (Alarm)				
D4	STAND-BY RMT SENSE, VSENSE_STBY				
D5	STAND-BY, +VSB				
D6	STAND-BY RETURN, -VSB				

WORLDWIDE OFFICES

Europe (UK)

2900 South Diablo Way Tempe, AZ 85282, USA +1 888 412 7832

Americas

Suite B100

Ground Floor Offices, Barberry House 4 Harbour Buildings, Waterfront West Brierley Hill, West Midlands DY5 1LN, UK +44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

Artesyn Embedded Technologies, Artesyn Embedded Power, Artesyn, and all Artesyn related logos are trademarks and service marks of Artesyn Embedded Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. Specifications are subject to change without notice. © 2019 Artesyn Embedded Technologies, Inc. All rights reserved. For full legal terms and conditions, please visit www.artesyn.com/legal.

An Advanced Energy Company

www.artesyn.com

For more information: www.artesyn.com For support: productsupport.ep@artesyn.com

DS1100HE 09Dec2019