Test Equipment Solutions Datasheet

Test Equipment Solutions Ltd specialise in the second user sale, rental and distribution of quality test & measurement (T&M) equipment. We stock all major equipment types such as spectrum analyzers, signal generators, oscilloscopes, power meters, logic analysers etc from all the major suppliers such as Agilent, Tektronix, Anritsu and Rohde & Schwarz.

We are focused at the professional end of the marketplace, primarily working with customers for whom high performance, quality and service are key, whilst realising the cost savings that second user equipment offers. As such, we fully test & refurbish equipment in our in-house, traceable Lab. Items are supplied with manuals, accessories and typically a full no-quibble 2 year warranty. Our staff have extensive backgrounds in T&M, totalling over 150 years of combined experience, which enables us to deliver industry-leading service and support. We endeavour to be customer focused in every way right down to the detail, such as offering free delivery on sales, covering the cost of warranty returns BOTH ways (plus supplying a loan unit, if available) and supplying a free business tool with every order.

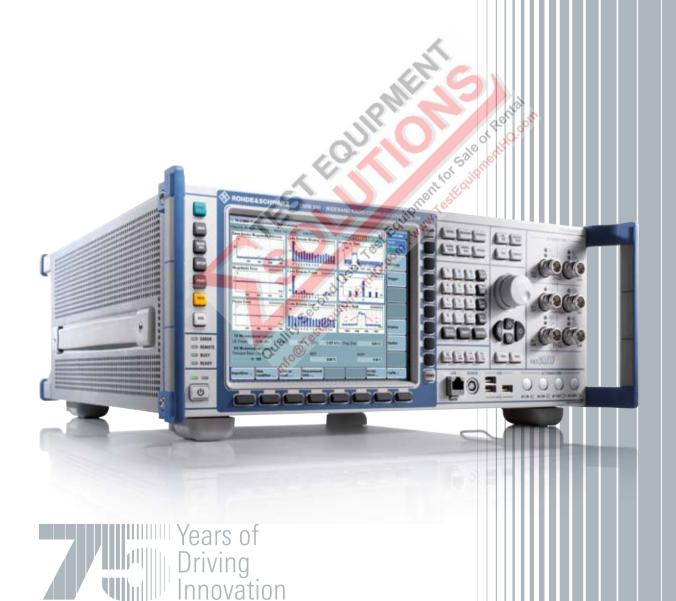
As well as the headline benefit of cost saving, second user offers shorter lead times, higher reliability and multivendor solutions. Rental, of course, is ideal for shorter term needs and offers fast delivery, flexibility, try-before-you-buy, zero capital expenditure, lower risk and off balance sheet accounting. Both second user and rental improve the key business measure of Return On Capital Employed.

We are based near Heathrow Airport in the UK from where we supply test equipment worldwide. Our facility incorporates Sales, Support, Admin, Logistics and our own in-house Lab.

All products supplied by Test Equipment Solutions include:

- No-quibble parts & labour warranty (we provide transport for UK mainland addresses).
- Free loan equipment during warranty repair, if available.
- Full electrical, mechanical and safety refurbishment in our in-house Lab.
- Certificate of Conformance (calibration available on request).
- Manuals and accessories required for normal operation.
- Free insured delivery to your UK mainland address (sales).
- Support from our team of seasoned Test & Measurement engineers.
- ISO9001 quality assurance.

Test equipment Solutions Ltd Unit 8 Elder Way Waterside Drive Langley Berkshire SL3 6EP


T: +44 (0)1753 596000 F: +44 (0)1753 596001

Email: info@TestEquipmentHQ.com Web: www.TestEquipmentHQ.com

R&S®CMW500
Wideband Radio
Communication Tester
RF production testing

DE&SCHWARZ

R&S®CMW500 Wideband Radio Communication Tester At a glance

The R&S®CMW500 marks the entry of a new generation of test equipment from Rohde & Schwarz. It allows fast and precise production testing of current and future wireless devices from a basic mobile phone to the most sophisticated PDA.

The tester includes the R&S®Smart Alignment ¹⁾ high-speed test concept plus the all-in-one architecture with integrated vector signal generator and analyzer. These are the prerequisites for state-of-the-art non-signaling alignment approaches.

The extreme scalability, test speed, and measurement accuracy of the R&S°CMW500 translate into minimum test costs.

Key facts

- Base model: general-purpose RF power meter and CW generator with List modes for fast calibration ¹⁾ of wireless devices
- Vector signal analyzer (VSA) for transmitter verification 1)
- Vector signal generator (VSG) for expanded receiver testing: ARB mode¹⁾ for short setup times or online mode¹⁾ for complex signals with high data volume
- Reference RF power measurement enabled by direct connection of R&S®NRP-Zxx power sensors
- Easy connection to wireless devices with complex RF architecture by using the integrated RF interface
- State-of-the-art graphical user interface (GUI)
- SCPI remote control via LAN/GPIB interface
- Ready for LXI Class C
- Process controller with Windows® XP operating system for test routines and remote control via Windows® Remote Desktop

For explanations see glossary at end of brochure.

Quality Second User Heat

R&S®CMW500 Wideband Radio Communication Tester

Benefits and key features

Multitechnology solution

Cellular technologies: GSM/GPRS/EDGE, WCDMA/HSPA/HSPA+, LTE FDD, LTE TDD (TD-LTE), Mobile WiMAX™/CDMA2000® 1xRTT, CDMA2000® 1xEV-DO. TD-SCDMA

Noncellular and supplementary technologies: GPS, DVB, Bluetooth®, WLAN

⊳ page 4

Future-ready RF parameters

3.3/6 GHz frequency range and 40/70 MHz analyzer/ generator IF bandwidth

⊳ page 5

Drastically reduced test costs; alignment up to ten

Innovative Rohde & Schwarz test concepts: R&S®Smart Alignment 1) and R&S®Multi-Evaluation List mode 1)

⊳ page 6

Designed for high first pass yield

High absolute accuracy plus repeatability and linearity

Optimized handling for production test systems

All-in-one architecture 1) with fully automatic RF path correction 1) and Press & Go 1) applications

▶ page 8

Minimum floor space

Dual-tester configuration enables simultaneous testing of two identical wireless devices

⊳ page 10

Reduced operating costs due to 24-month calibration

Optimized solution for every application: selectable calibration interval of 12 or 24 months for high absolute accuracy or reduced costs

⊳ page 12

From pre-sale to service. At your doorstep.

Worldwide network of local Rohde & Schwarz experts in over 70 countries

▶ page 13

[&]quot;WiMAX Forum" is a registered trademark of the WiMAX Forum. "WiMAX," the WiMAX Forum logo, "WiMAX Forum Certified," and the WiMAX Forum Certified logo are trademarks of the WiMAX Forum.

CDMA2000° is a registered trademark of the Telecommunications Industry Association (TIA -USA).

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Rohde&Schwarz is under license.

Multitechnology solution

The R&S°CMW500 allows users to implement the concept of a lean production line from start to finish: A single measuring instrument covers all RF test requirements.

Analyzer

- Flexible RF power meter with List mode for fast calibration of TX power steps (basic function)
- I/Q recorder function for customer-specific evaluation (basic function)
- Vector signal analyzer for TX verification (R&S°CMW-KMxxx measurement personalities)

Generator

- CW generator with List mode for fast RX calibration (basic function)
- Vector signal generator based on ARB + realtime baseband generator board (R&S°CMW-B110A option)
- Online mode: realtime coding of complex signals with high data volume (R&S°CMW-KGxxx generator personalities)
- ARB mode: modulation via precalculated waveforms stored in the ARB memory
- R&S°WinIQSIM2 waveform creation tool supporting different technologies (R&S°CMW-KWxxx options), alternatively user-specific waveforms

est Eduiphu

Overview of R&S®CMW500 cellular wireless device test functions					
Technology	Functionality				
	Vector signal analyzer	signal analyzer Vector signal gener			
	ith stick	ARB mode	Online mode		
GSM/GPRS/EDGE	Cuality des	•	•		
WCDMA/HSPA	info	•	•		
WCDMA/HSPA+	•	•			
LTE FDD	•	•			
LTE TDD (TD-LTE)	•	•			
Mobile WiMAX™	•	•			
CDMA2000® 1xRTT	•	•			
CDMA2000® 1xEV-DO	•	•			
TD-SCDMA	•	•			

Overview of R&S®CMW500 noncellular/supplementary wireless device test functions					
Technology	Functionality Vector signal analyzer Vector signal generator				
		ARB mode	Online mode		
GPS		•			
DVB-T		•			
Bluetooth®	•	•			
WLAN	•	•			

Future-ready RF parameters

Minimum risk due to scalable 3.3 GHz or 6 GHz frequency range

The frequency range of the base model is 70 MHz to 3.3 GHz. Extension to 6 GHz by means of software update (R&S®CMW-KB036 option) and instrument calibration. Quick and easy adaptation to new technologies and bands.

High measurement speed owing to 40 MHz IF bandwidth

Simple one-sweep broadband measurements can be performed. Technologies such as LTE/EUTRA with transmission bandwidths of up to 20 MHz can be handled.

Simplified test system architecture through wide RF level range

- Output level range from -130 dBm to +8 dBm (CW, RMS)
- Output level dynamic range of 128 dB
- Input level range from -84 dBm to +34 dBm (power meter, CW, RMS)

The wide dynamic range makes additional external amplifiers or attenuators unnecessary. You can reduce test system costs without having to accept restrictions on reliability or accuracy.

Comprehensive RF frontend eliminates external hardware (dual-tester front panel).

Drastically reduced test costs; alignment up to ten times faster

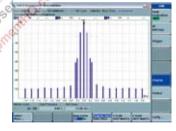
Ongoing technological innovation and the ever-rising number of bands that must be supported increase the complexity of state-of-the-art wireless devices. The test effort multiplies, and the production costs rise. For these reasons, finding new, time-saving alignment approaches is essential. Rohde&Schwarz offers a significant reduction of test times compared to conventional methods by means of R&S®Multi-Evaluation¹¹¹ TX measurements and its R&S®Smart Alignment¹¹ concept. The R&S®CMW500 all-in-one architecture¹¹ with built-in analyzer and generator provides the fastest possible transmit-receive interaction and is the optimum solution for time-critical tests in production.

R&S®Multi-Evaluation transmitter measurements

- Different evaluations (power, time mask, modulation quality, spectrum, code domain) can use an identical sampling data set
- I Time-overlapped data capturing and evaluation
- Enhanced speed by switching off evaluations that are not required

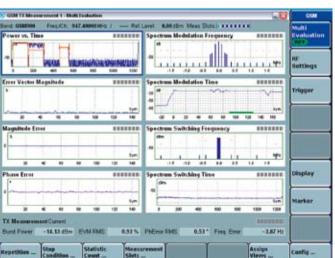
This approach not only increases the test speed in comparison with purely sequential data capturing and evaluation but also ensures greater test depth. This results in a more detailed overview of the transmitter functions, since all measured parameters are correlated.

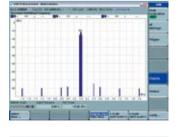
R&S®Smart Alignment concept

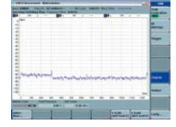

- Fully automatic frequency and level switching with general-purpose RF generator and power meter in List mode
- R&S®Multi-Evaluation List mode¹⁾ helps ensure fast transmitter verification
- Simultaneous transmitter and receiver alignment, if supported by the DUT¹⁾
- Extensive trigger functions for analyzer/generator
- Statistical evaluation included

Preconfigured identical test sequences in the DUT¹⁾ and the tester minimize the volume of communications inside the test system, which is the bottleneck of conventional approaches. Flexible R&S°CMW500 parameterization facilitates adaptation to the test philosophy of the wireless device under test and speeds up transfer to mass production.

R&S®Multi-Evaluation: GSM TX measurement







Designed for high first pass yield

The R&S®CMW500 has been specially designed for production applications: Top priority was placed on accuracy, repeatability, and linearity. These parameter have a direct influence on the production yield. The higher the accuracy of these parameters, the lower the number of DUTs that are classified as faulty although they comply with specifications. Internal temperature sensors automatically adapt the measurement accuracy to the ambient conditions. It is not necessary to perform a calibration when temperatures vary or when the instrument is switched on.

Its high absolute accuracy plus repeatability and linearity enable the R&S®CMW500 to be used flexibly no matter which RF path correction concept is applied to the individual production test station.

Relevant R&S®CMW500 RF power meter parameters				
Level uncertainty		<0.50 dB, typ. <0.30 dB		
Level repeatability	input level ≥-40 dBm	typ. <0.01 dB		
Level linearity with fixed expected nominal power setting	level range 0 dB to –40 dB	typ. <0.15 dB		

Relevant R&S®CMW500 generator parameters				
Output level uncertainty	output level >-120 dBm	<0.60 dB, typ. <0.36 dB		
Output level repeatability	output level <-80 dBm	typ. <0.05 dB		
Output level linearity with fixed RF output attenuator setting	output level range –130 dBm to –5 dBm, GPRF generator List mode, level range 0 dB to –30 dB	typ. <0.15 dB		

Optimized handling for production test systems

The R&S°CMW500 is a turnkey solution that can start testing immediately after delivery. The fully integrated tester with calibrated RF paths and Press&Go¹¹ applications simplifies generating and updating test sequences and production test systems. The all-in-one architecture¹¹ ensures maximum test performance plus minimum footprint and optimum power consumption. This concept for minimizing test costs comes from a company that has been successfully supplying solutions for the production of wireless devices for more than 30 years: Rohde&Schwarz.

Minimum user risk owing to all-in-one architecture

- Built-in vector signal analyzer and generator
- I SCPI remote control via LAN or GPIB interface
- Windows® XP operating system
- Remote control via Windows® Remote Desktop
- I Connectors for mouse, keyboard, and external monitor
- Internal TCXO or OCXO timebase and 10 MHz reference frequency output
- External reference frequency (alternative)
- Fully automatic RF path correction concept¹⁾ of frequency, temperature, and level in realtime
- Completely calibrated solution
- Completely standard-conforming EMC¹⁾ characteristics
- Matched power supply

The turnkey solution provides assured measurement accuracy without the user's constant attention. Time- and cost-intensive repetitive self-alignment procedures can be omitted.

Block diagram of the R&S®CMW500 R&S°CMW500 wideband radio communication tester DUT MMI RF frontend Peripherals RF1 OUT VSG RX3 Timina RX1 reference RF1 COM Triggering Controller TX1 Remote control LAN/IEEE RX2 RF2 COM VSA Power supply TX2

Comprehensive RF frontend eliminating external hardware

- I Flexible RF interface for direct connection of wireless devices with complex RF architecture
- Alternative: simultaneous connection of two wireless devices with one antenna each (connectors RF1 COM and RF2 COM)
- I Entirely integrated into R&S[®]CMW500 path correction concept ¹⁾
- Flexible path configuration via GUI¹⁾
- Optimized for mass tests in production
- I Snap-N female connector RF1 OUT: RF output
- Snap-N female connector RF1 COM: combined RF input/output
- Snap-N female connector RF2 COM: combined RF input/output

The handling time for sequential testing of two wireless devices is reduced. The test system costs decrease while reliability and accuracy increase, since additional RF components are not required.

Optimum handling through Press & Go applications

- I Highly automated measurements at the press of a button
- Preconfigured in line with specifications of the selected technology
- Extensive statistical evaluations of measurement results already implemented

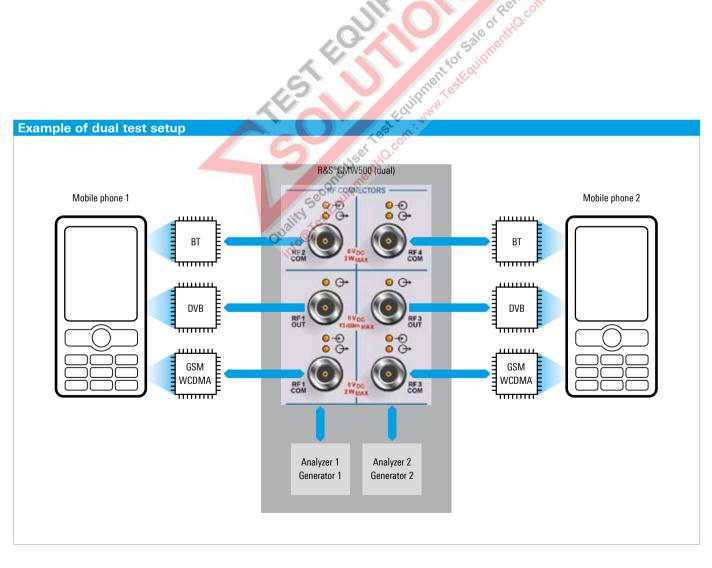
Technology-specific measurement results are output; no need to bother with time-consuming details such as calculation, limits, or statistics.

Minimum operating costs due to state-of-the-art selftest concept

- Extensive selftests at the system and module level ensure that the communications between internal modules are not interrupted and that hardware modules work properly
- Selftests primarily intended for service purposes and not needed during normal operation
- Examples: voltage diagnostic test, memory test, address line test, download test, EEPROM test

The user can determine the status of the R&S°CMW500 without having to disassemble the test system. The possibility of directly locating error spots in the case of increased DUT ¹⁾ failure rates reduces the downtime of the production system.

Precise reference measurements by connecting R&S®NRP-Zxx power sensors


Highly accurate RF power measurements at any point in the test setup make it possible to optimize test procedures in production. It is possible to connect an R&S®NRP-Zxx power sensor directly to the R&S®CMW500 for reference measurements.

Test setup for reference measurements with an R&S*NRP-Zxx power sensor and an R&S*NGMO2 power supply.

Minimum floor space

The R&S°CMW500 can optionally be configured as a dual tester. This configuration includes dual test resources so that two identical wireless devices can be tested simultaneously. This approach saves valuable floor space in the production hall.

R&S®CMW280 wideband radio communication tester

The R&S°CMW280 is the compact version of the R&S°CMW500 and has 20% less depth. The instrument can be configured exclusively as a single tester and requires only minimum floor space in classic test concepts.

	R&S®CMW500	R&S®CMW280
Testing capability	1 DUT, optional 2 DUTs simultaneously	1 DUT
Dimensions (W \times H \times D)	$465.1 \text{ mm} \times 197.3 \text{ mm} \times 517.0 \text{ mm}$ (18.3 in × 7.8 in × 20.4 in)	465.1 mm × 197.3 mm × 417.0 mm (18.3 in × 7.8 in × 16.4 in)
Weight with typical options	approx. 18 kg (approx. 40 lb)	approx. 14 kg (approx. 31 lb)
Remote control interfaces		
Front panel	450	
LAN	1	
Rear panel	Oly (a)	ntal a
LAN	1	A COM
IEEE 488	option	01 70
USB type B	1 /6	direct-

The R&S°CMW280 is the compact version of the R&S°CMW500 and has 20% less depth.

Reduced operating costs due to 24-month calibration interval

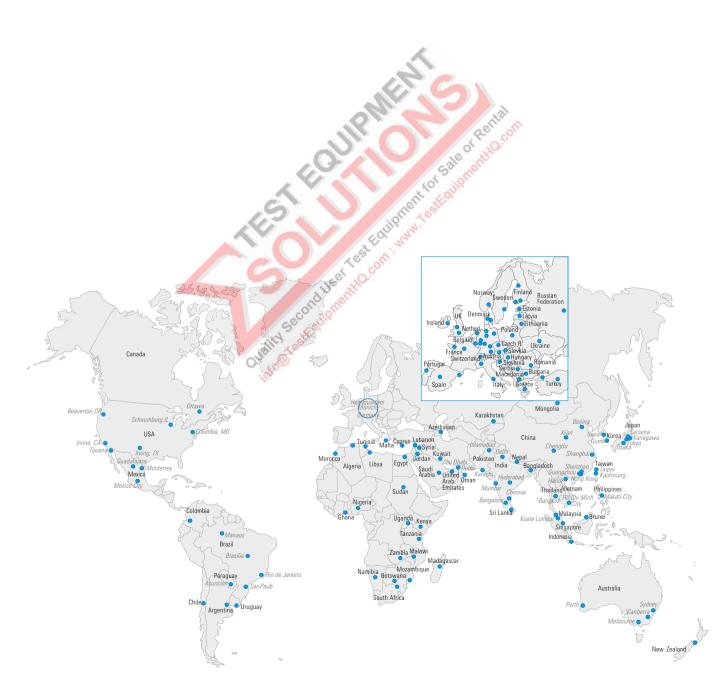
Selectable calibration interval of either 12 or 24 months. Users can optimize costs to achieve high absolute accuracy or minimum test and measurement operating costs.

Relevant R&S®CMW500 RF level uncertainty

12-month calibration interval:

- Analyzer < 0.50 dB</p>
- Generator < 0.60 dB

24-month calibration interval:


- Analyzer < 0.70 dB
- Generator < 0.80 dB

From pre-sale to service. At your doorstep.

The Rohde & Schwarz network in over 70 countries ensures optimum on-site support by highly qualified experts. The user risks are reduced to a minimum at all stages of the project:

- Solution finding/purchase
- Technical start-up/application development/integration
- Training
- Operation/calibration/repair

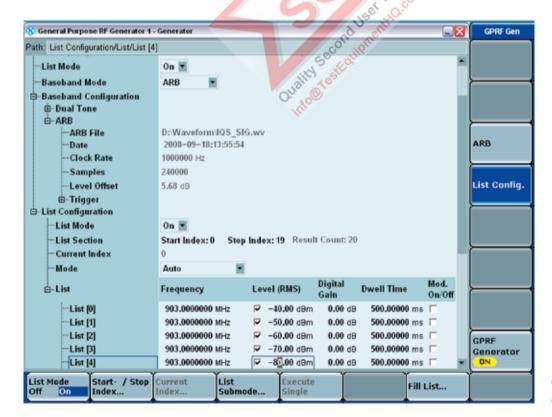
Application

Production test on wireless devices with the R&S®CMW500

Chipset requirements R&S®CMW500 solution Narrowband RF signal (CW), Basic functionality, GPRF¹⁾ generator variable level and frequency GPRF 1) generator combined with Broadband RF signal, variable level and frequency ARB + realtime 1) baseband generator module (R&S®CMW-B110A option) in ARB mode 1); broadband modulated waveforms Complex modulated RF signal GPRF¹⁾ generator combined with ARB + realtime 1) basewith technology-specific channels, variable level and frequency band generator module (R&S®CMW-B110A option) in ARB mode 1); technology-specific waveforms precalculated by means of R&S®WinIQSIM2™ (R&S°CMW-KWxxx option)

Economically produced RF chips exhibit variations in frequency and level characteristics. The following test procedure must be applied:

Step1: Calibration. Deviations from the ideal values for transmitter and receiver must be measured, interpolated, and stored in correction tables.


Step 2: Verification of the most important transmit and receive parameters.

This is the only way to ensure that the specifications of the relevant technology standard will be complied with later during operation in the network and that the wireless device will operate reliably.

Transmit power step alignment

The R&S°CMW500 GPRF¹) power measurement evaluates a list of power steps at different levels and frequencies and performs statistical evaluation. A wide range of IF filters is available:

- Gaussian filters, selectable bandwidths between
 1 kHz and 10 MHz
- Bandpass root raised-cosine (RRC) filters, selectable bandwidths between 1 kHz and 40 MHz, roll-off 0.1
- WCDMA RRC filter (3GPP TS 34.121 specification), 3.84 MHz bandwidth, roll-off = 0.22
- CDMA filter (TIA/EIA/IS-2000.2-A specification), 1.4 MHz bandwidth

General-purpose RF generator configuration menu.

Calibration of receiver signal strength indication (RSSI) 1)

The R&S°CMW500 enables the following calibration scenarios to be implemented as a function of the specific chipset requirements.

The GPRF ¹⁾ generator in List mode can be operated with preconfigured levels and frequencies. The precalculated baseband signal, which is stored in the ARB ¹⁾ memory, can be provided with markers that stepwise switch the list of the GPRF ¹⁾ generator.

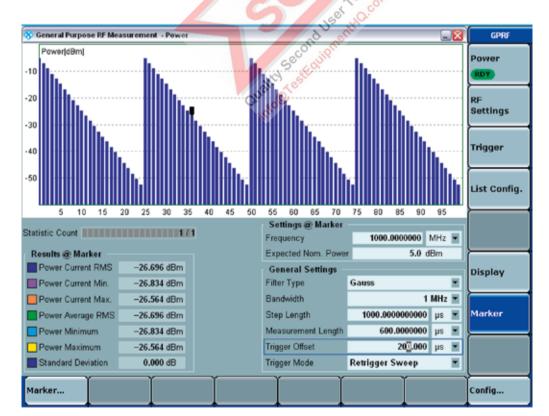
Multisegment waveforms and marker-triggered GPRF ¹⁾ generator lists are prerequisites for minimum ARB ¹⁾ setup times and fast RSSI ¹⁾ calibration scenarios.

Transmitter verification

The R&S°CMW500 makes it possible to perform technology-specific R&S°Multi-Evaluation measurements (R&S°CMW-KMxxx options). The R&S°Multi-Evaluation List mode (R&S°CMW-KM012 option) is a consistent implementation of the R&S°Smart Alignment concept (predefined test sequences) for transmitter verification.

Receiver verification

The receiver is checked for technology-specific absolute sensitivity and maximum input level.

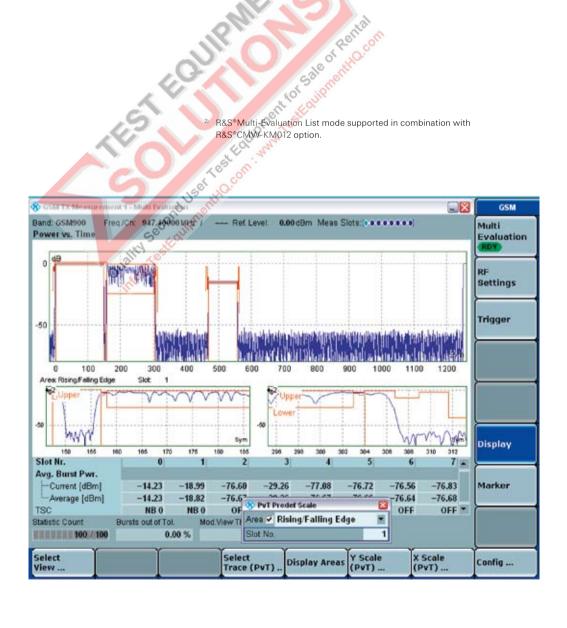

This verification is based on a BER test ¹⁾ with the R&S°CMW500 being used as the signal source. The ARB + realtime ¹⁾ baseband generator module (R&S°CMW-B110A option) provides technology-specific signals with pilot and data channels. Depending on the applicable test requirements, the following solutions are offered:

- I ARB mode¹) based on precalculated R&S®WinIQSIM2™ waveforms (R&S®CMW-KWxxx options) or customerspecific waveforms
- Online mode ¹⁾ for pilot channels and PRBS user data channels with high data volume (R&S®CMW-KGxxx options)

In single-ended BER testing ¹⁾, the bit error ratio is evaluated in the DUT or the DUT controller.

In loop BER testing 1, the data stream to be tested is routed back to the tester via the uplink. The R&S°CMW500 operates in non-signaling mode (no base station emulation) and evaluates the bit error ratio of the following channels via postprocessing:

- I GSM Loop C
- WCDMA RMC 12.2 kbps
- TD-SCDMA RMC 12.2 kbps


General-purpose RF power measurement menu.

TX measurements

GSM/GPRS/EDGE

R&S®CMW-KM200 measurement personality²⁾

- Burst power
- Time mask
- I I/Q origin offset/imbalance (8PSK modulation scheme)
- Error vector magnitude (8PSK modulation scheme)
- Magnitude error (8PSK modulation scheme)
- Phase error
- Frequency error (GMSK modulation scheme)
- I Spectrum due to modulation
- Spectrum due to switching

Time mask screen:
GSM/GPRS/EDGE TX measurement – R&S*Multi-Evaluation.

WCDMA

R&S®CMW-KM400 measurement personality²⁾

- UE power measurements can be applied to OFF/max./ min. power
- Error vector magnitude
- Magnitude error
- Phase error
- I I/Q origin offset/imbalance
- Frequency error
- Phase discontinuity
- Adjacent channel leakage ratio
- Spectrum emission mask
- Occupied bandwidth
- Code domain power
- Peak code domain error
- Code domain error
- Code domain power monitor
- I Code domain error monitor

HSPA extensions

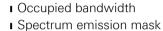

R&S®CMW-KM401 measurement personality

- Half-slot measurements
- Modulation analysis of HSPA channels
- Code domain power measurement of HSPA channels
- Code domain error versus slot measurement of HSPA channels
- HS-DPCCH power control
- Phase discontinuity

HSPA+ extensions

R&S°CMW-KM493 measurement personality

- 16QAM modulation analysis
- Relative code domain error (in the pipeline)

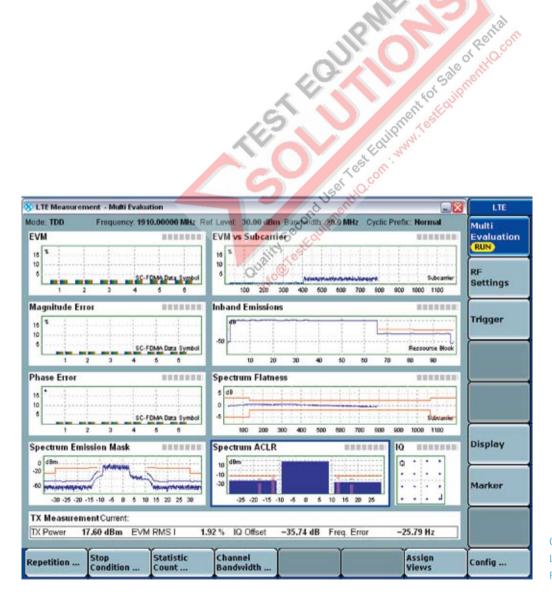



Overview screen:
WCDMA TX measurement –
R&S°Multi-Evaluation.

LTE FDD

R&S®CMW-KM500 measurement personality

- Transmit power
- Peak power
- Resource block power
- Error vector magnitude
- Magnitude error
- Phase error
- Frequency error
- I/Q origin offset
- I I/Q constellation diagram
- In-band emissions
- Spectrum flatness
- Adjacent channel leakage ratio


Overview screen: LTE FDD TX measurement -R&S®Multi-Evaluation.

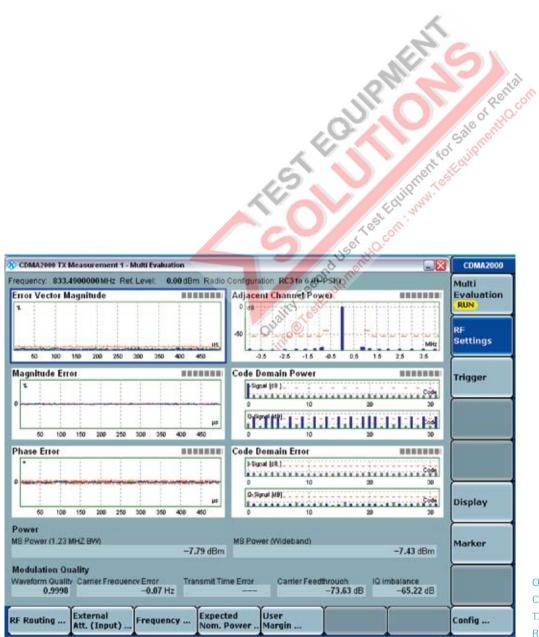
LTE TDD (TD-LTE)

R&S®CMW-KM550 measurement personality

- Transmit power
- Peak power
- Resource block power
- Error vector magnitude
- Magnitude error
- Phase error
- Frequency error
- I/Q origin offset
- I I/Q constellation diagram
- In-band emissions
- Spectrum flatness
- Adjacent channel leakage ratio
- Occupied bandwidth

Spectrum emission mask

Overview screen:

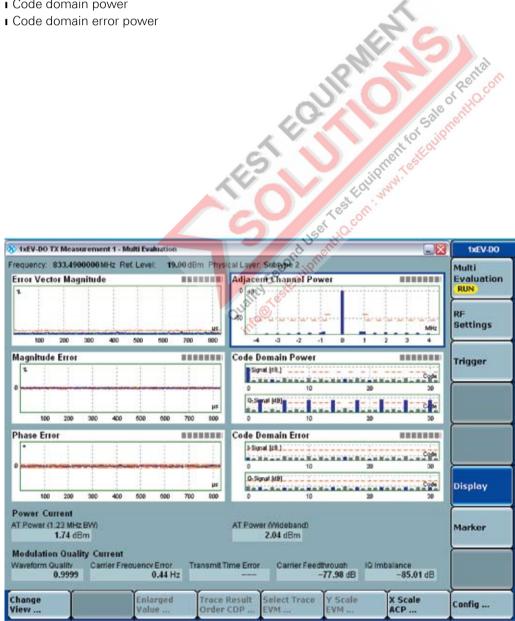

LTE TDD TX measurement –

R&S°Multi-Evaluation.

CDMA2000® 1xRTT

R&S®CMW-KM800 measurement personality

- MS power
- I Error vector magnitude
- Magnitude error
- Phase error
- Frequency error
- Carrier feedthrough
- I I/Q imbalance
- Waveform quality
- Adjacent channel power
- Code domain power
- I Code domain error power

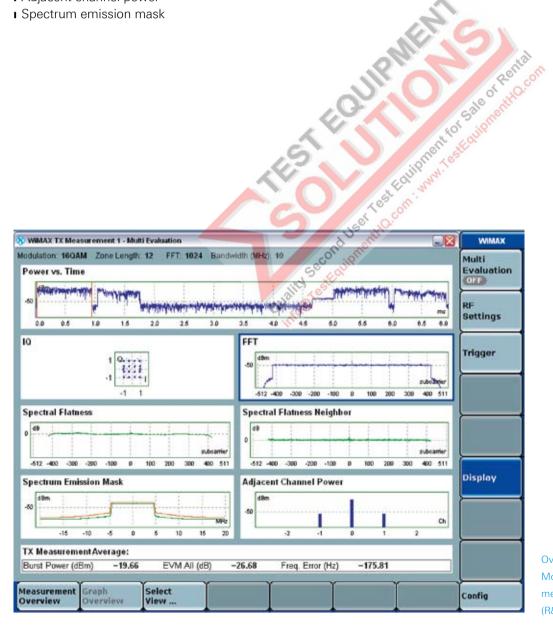


Overview screen:
CDMA2000° 1xRTT
TX measurement –
R&S°Multi-Evaluation.

CDMA2000® 1xEV-DO (Rev. A & Rel. B)

R&S®CMW-KM880 measurement personality

- MS power
- Error vector magnitude
- Magnitude error
- Phase error
- Frequency error
- Carrier feedthrough
- I I/Q imbalance
- Waveform quality
- Adjacent channel power
- Code domain power

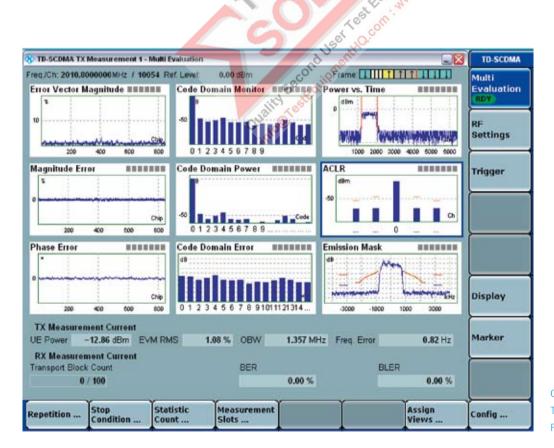


Overview screen: CDMA2000® 1xEV-DO TX measurement -R&S®Multi-Evaluation.

Mobile WiMAX™

R&S®CMW-KM700 measurement personality

- Burst power
- Time mask
- Crest factor
- Subcarrier power
- Center frequency error
- Error vector magnitude (unmodulated)
- I I/Q offset/imbalance
- Gain imbalance
- Oudrature error
- Sample clock error
- Spectral flatness (neighbor)
- Occupied bandwidth
- Adjacent channel power Spectrum emission mask



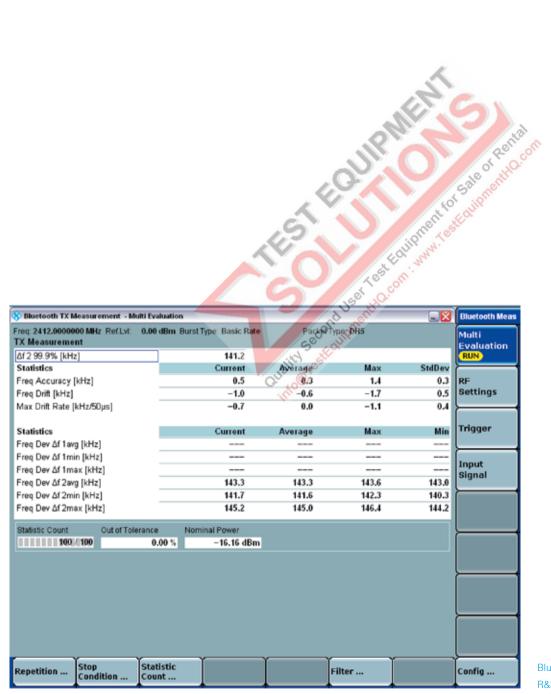
Overview screen: Mobile WiMAX™ TX measurement - R&S®Multi-Evaluation (R&S®CMW-KM701 option).

TD-SCDMA

R&S®CMW-KM750 measurement personality

- **■** UE power
- Transmit ON/OFF time mask
- Error vector magnitude
- Magnitude error
- Phase error
- Frequency error
- I I/Q origin offset
- I/Q imbalance
- Waveform quality
- Adjacent channel leakage ratio
- Spectrum emission mask
- Occupied bandwidth
- Code domain power
- Code domain error powerCode domain monitor

Overview screen:


TD-SCDMA TX measurement –

R&S*Multi-Evaluation.

Bluetooth®

R&S®CMW-KM610 measurement personality

- Nominal power
- Frequency accuracy (basic rate)
- Frequency drift (basic rate)
- Frequency deviation (basic rate)
- Frequency stability ω_i (enhanced data rate)
- $_{\text{I}}$ Frequency stability $\omega_{_{0\,\text{max}}}$ (enhanced data rate)
- Delta error vector magnitude (enhanced data rate)

Bluetooth® TX measurement – R&S®Multi-Evaluation.

IEEE 802.11 a/b/g (WLAN)

IEEE 802.11 n extension

R&S®CMW-KM650 measurement personality


R&S®CMW-KM651 measurement personality

Burst power

I/O errors

- Error vector magnitude (IEEE802.11 b/g DSSS analysis mode)
- Error vector magnitude (IEEE802.11 a/g OFDM analysis mode)
- Center frequency error
- Chip clock error (IEEE 802.11 b/g DSSS analysis mode)
- Symbol clock error (IEEE802.11a/g OFDM analysis mode)

- Burst power
- Error vector magnitude
- Center frequency error
- Symbol clock error
- I/O errors

WLAN TX measurement – R&S®Multi-Evaluation.

Recommended extra R&S®CMWrun sequencer software tool

The R&S°CMWrun sequencer software tool meets all needs for executing test sequences to remote-control the R&S°CMW500/280 in R&D, quality assurance, and in the production of current and future wireless equipment.

The software engine is based on the execution of test DLLs (plug-in assemblies). This architecture not only allows easy and straightforward configuration of test sequences without knowledge of specific remote programming of the instrument but also provides full flexibility in configuring parameters and limits of the test items provided in the R&S°CMWrun package options for the different standards.

Highlights

- Multitechnology solution
- R&S°CMWrun general-purpose software package for non-signaling applications (R&S°CMW-KT051 option)
- R&S°CMWrun WiMAX™ software package for Mobile WiMAX™ in non-signaling and signaling applications (R&S°CMW-KT057 option)
- Further technologies to be supported in the future
- Ready-to-use solution, containing predefined Rohde & Schwarz applications for the technologies supported by the R&S CMW500/280
- Application programming interface (API)-based engine for easy and flexible integration of new applications
- Ease of use due to dedicated interfaces for operation, for editing sequences, for measurement reports and for debugging test sequences
- Application for SCPI remote control via LAN or GPIB interface

Key features

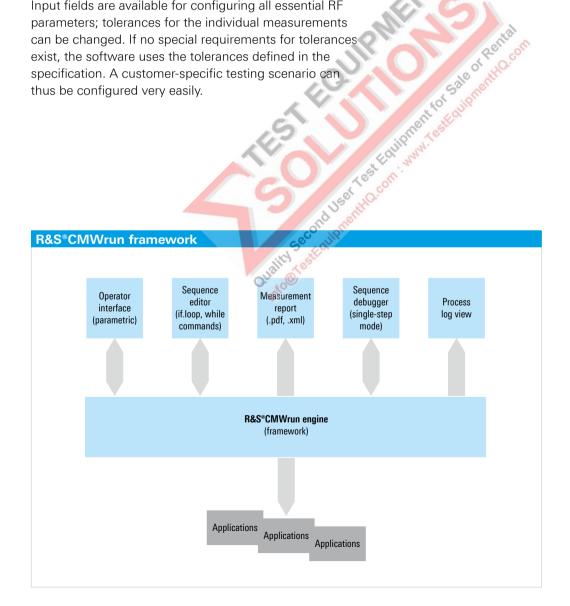
Ready-to-use solution for configuring a test sequence with just a few mouse clicks

The straightforward graphical interface makes it easy to program test sequences. The user can define customized test sequences for any of the supported mobile communications standards in the R&S°CMW500/280 with just a few mouse clicks. Programming knowledge is not required.

Test sequence editor for high flexibility, from regression testing to simple test sequences

The R&S®CMWrun sequencer software lets the user integrate basic programming commands such as "if", "while" or "loop" to control the test sequence, allowing test sequences to be executed interactively. Such control features are integrated into the test sequence in a separate "edit test sequence menu" view to protect the configuration in the standard test sequence view.

Control of all parameters in one view


Input fields are available for configuring all essential RF parameters: tolerances for the individual measurements can be changed. If no special requirements for tolerances exist, the software uses the tolerances defined in the specification. A customer-specific testing scenario can thus be configured very easily.

Automated report options for secure quality management in line with international quality standards

Measurement reports are generated online during test execution or after the end of the test, if priority is placed on measurement speed. In addition, different export formats are available as a global setting or for a specific test sequence. Test reports can be stored automatically after every test routine and automatically exported to a defined report format. This feature allows a high level of automation in production lines, e.g. by providing the interfaces for standard statistical tools.

Flexible optioning concept for instrument- or PC-based licensing

The R&S®CMWrun sequencer software can be installed either on an external PC (Windows® XP PC) or directly on an R&S®CMW500/280. A smart card is required for licensing if the external PC is used for R&S[®]CMWrun licensing. This allows full flexibility with different instruments. For best performance, the PC installation is recommended.

Glossary

Term	Explanation
ACLR	Adjacent channel leakage ratio
ACP	Adjacent channel power
Alignment	Wireless device production cycle consisting of calibration and verification
All-in-one architecture	Complete, highly integrated compact solution with assured measurement accuracy and optimum handling
ARB	Generally used abbreviation for arbitrary waveform generator functionality
ARB generator mode	Baseband generator mode where the modulation is implemented by means of precalculated waveforms stored in the ARB memory
ARB + realtime baseband generator module	Generator module that supports not only the classic ARB mode but also the generation of complex modulated signals in realtime
BB	Baseband
BER	Bit error ratio
Calibration	Wireless device production stage during which the transmit power steps and the RSSI steps are measured and compared to reference values. The correction factors obtained are stored in the wireless device. Other common designations: phasing, tuning, alignment
CW	Continuous wave
DSP	Digital signal processor
Dual tester	Device configuration including two analyzers and two generators each for simultaneous testing of two identical wireless devices
DUT	Device under test
DVI	Digital video interface Electromagnetic compatibility Error vector magnitude General-purpose radio frequency Lists containing predefined levels and frequencies for GPBE generator/power meter test sequences.
EMC	Electromagnetic compatibility
EVM	Error vector magnitude
GPRF	General-purpose radio frequency
GPRF List mode	Lists containing predefined levels and frequencies for GPRF generator/power meter test sequences
GUI	Graphical user interface
HW	Hardware
Loop BER test in non-signaling mode	Method for RX verification in production. This test is performed in non-signaling mode, i.e. without realtime network emulation. The bit error ratio is evaluated through postprocessing via the uplink
ME	Magnitude error
MMI	Man machine interface
OBW	Man machine interface Occupied bandwidth Baseband generator mode where complex modulated signals are generated in realtime; maximal
Online generator mode	Baseband generator mode where complex modulated signals are generated in realtime; maximal operation is performed via MMI
Path correction	Method for increasing the measurement accuracy by taking into account the influence of frequency, temperature, and level on the RF attenuation of the measurement path
PE	Phase error 0
PRBS	Pseudo random bit sequence
Press & Go	Turnkey, highly automated test functionality that is available at the press of a button
R&S®Multi-Evaluation	Transmitter measurement concept where different measurement parameters use identical raw data
R&S®Smart Alignment	Alignment concept where predefined identical test sequences in the DUT and in the tester reduce the data volume in the test system and significantly shorten the test time
R&S®Multi-Evaluation List mode	R&S®Smart Alignment method; fast TX verification based on predefined test sequences
RF	Radio frequency
RMC	Reference measurement channel
RSSI	Receiver signal strength indication
RX	Receiver
SEM	Spectrum emission mask
Single-ended BER test	Modern approach to receiver verification where the stimulating signal is provided by the measuring instrument and the BER is calculated in the DUT
Single tester	Device configuration including one analyzer and one generator each
SW	Software
Verification	Wireless device production stage during which the most important transmit and receive parameters are checked after calibration
VSA	Vector signal analyzer
VSG	Vector signal generator

R&S®CMW500 specifications in brief

RF generator		
Frequency range	base model	70 MHz to 3300 MHz
	with R&S®CMW-KB036 option	70 MHz to 6000 MHz
Output level range		
RF1 COM, RF2 COM	100 MHz to 3300 MHz	
	continuous wave (CW)	-130 dBm to -5 dBm
	peak envelope power (PEP)	up to -5 dBm
	overranging (PEP)	up to 0 dBm
RF1 OUT	100 MHz to 3300 MHz	
	continuous wave (CW)	-120 dBm to +8 dBm
	peak envelope power (PEP)	up to +8 dBm
	overranging (PEP)	up to +13 dBm
Output level uncertainty	in temperature range +20°C to +35°C,	no overranging
RF1 COM, RF2 COM	output level >-120 dBm	
	100 MHz to 3300 MHz	<0.6 dB
RF1 OUT	output level >-110 dBm	
	100 MHz to 3300 MHz	<0.8 dB
		51

and the second second			
Modulation source: arbitrar	y waveform generator (ARB)	3) (R&S°CMW-B110A option)	
Memory size		1024 Gbyte	
Word length		16 bit	
	0	16 bit	
	marker	4 bit to 16 bit	
Sample length	with 4-bit marker	up to 227.55 Msample	
Sample rate	minimum	400 Hz	
	maximum	100 MHz	

RF power meter	JS ATTION	
Frequency range	base model	70 MHz to 3300 MHz
	with R&S°CMW-KB036 option	70 MHz to 6000 MHz
Expected nominal power setting range	ital stiff	
RF1 COM, RF2 COM	100 MHz to 3300 MHz	-47 dBm to +34 dBm
Level uncertainty	in temperature range +20°C to +35°C	
RF1 COM, RF2 COM	100 MHz to 3300 MHz	<0.5 dB

General data		
Dimensions	$W \times H \times D$	465.1 mm × 197.3 mm × 517.0 mm 18.31 in × 7.77 in × 20.35 in (19" 1/1, 4 HU, 450)
Weight	with typical options (single tester)	approx. 18 kg approx. 39.68 lb
Calibration interval	12 months	recommended for highest accuracy, see specified RF generator and RF analyzer level uncertainty
	24 months	add 0.2 dB to specified RF generator and RF analyzer level uncertainty

Ordering information

Designation	Туре	Order No.	R&S® CMW500		R&S® CMW280
			Single (qty.)	Dual (qty.)	Single (qty.)
Model, mandatory					
Wideband Radio Communication Tester	R&S®CMW500	1201.0002K50	1	1	_
Wideband Radio Communication Tester	R&S®CMW280	1201.0002K25	-	_	1
Basic assembly, mandatory					
R&S°CMW500 Wideband Radio Communication Tester, Basic Assembly	R&S°CMW-PS502	1202.5408.02	1	1	-
R&S°CMW280 Wideband Radio Communication Tester, Basic Assembly	R&S°CMW-PS280	1202.7300.02	-	-	1
Baseband Interconnection Board (fixed link)	R&S®CMW-S550A	1202.4801.02	1	1	-
RF Frontend Module	R&S®CMW-S590A	1202.5108.02	1	1	1
Selections, one out of two items to be selected, mandato	ry				
R&S°CMW500 Frontpanel without Display/Keypad (contains DVI interface)	R&S°CMW-S600A	1201.0102.02	1	1	-
R&S°CMW500 Frontpanel With Display/Keypad	R&S®CMW-S600B	1201.0102.03	1	1	-
R&S°CMW280 Frontpanel Without Display/Keypad (contains DVI interface)	R&S°CMW-S600E	1201.0102.06	-	-	1
R&S°CMW280 Frontpanel With Display/Keypad	R&S®CMW-S600F	1201.01 <mark>02.0</mark> 7	_	_	1
Hardware configuration, mandatory for dual tester					
Baseband Measurement Unit	R&S®CMW-B100A	1202.8607.02	- 12	1	_
RF Converter Module (TRX)	R&S®CMW-B570B	1202.8659.03	- Ital	1	_
RF Frontend Module	R&S®CMW-B590A	1202.8707.02	±Q.º	1	_
Hardware configuration, optional	1.G	Salene	TE		
ARB + Realtime Baseband Generator Module	R&S°CMW-B110A	1202.5508.02	1	2	1
IEEE Bus Interface Module (single connector)	R&S®CMW-B612A	1202.5608.02	1	1	_
IEEE Bus Interface Module (dual connector), alternatively	R&S®CMW-B612B	1202.5708.02	1	1	_
Digital Video Interface (DVI) Module (only required for units with display/keypad)	R&S°CMW-B620A	1202.5808.02	1	1	1
OCXO Module	R&S°CMW-B690A	1202.5908.02	1	1	1
OCXO Module (highly stable), alternatively	R&S°CMW-B690B	1202.6004.02	1	1	1
Extended Frequency Range 3.3 GHz to 6 GHz	R&S°CMW-KB036	1203.0851.02	1	2	1
TX measurement personalities, optional	con iom				
FFT Spectrum Analyzer	R&S°CMW-KM010	1203.5953.02	1	2	1
TX Measurement, I/Q versus Slot	R&S°CMW-KM011	1203.0800.02	1	2	1
TX Measurement, I/Q versus Slot TX Measurement, R&S®Multi-Evaluation List Mode	R&S°CMW-KM012	1203.4457.02	1	2	1
TX Measurement, GSM/GPRS/EDGE, Uplink	R&S®CMW-KM200	1203.0551.02	1	2	1
TX Measurement, WCDMA, Uplink	R&S®CMW-KM400	1203.0700.02	1	2	1
TX Measurement, WCDMA HSPA Extension of R&S°CMW-KM400, Uplink	R&S°CMW-KM401	1203.2954.02	1	2	1
TX Measurement, WCDMA HSPA+ Extension of R&S°CMW-KM401, Uplink	R&S®CMW-KM403	1203.9007.02	1	2	1
TX Measurement, LTE FDD, Uplink	R&S°CMW-KM500	1203.5501.02	1	2	1
TX Measurement, LTE TDD (TD-LTE), Uplink	R&S°CMW-KM550	1203.8952.02	1	2	1
TX Measurement, Bluetooth®, Basic Rate and EDR	R&S®CMW-KM610	1203.6350.02	1	2	1
TX Measurement, WLAN (IEEE802.11 a/b/g)	R&S°CMW-KM650	1203.1658.02	1	2	1
TX measurement, WLAN (IEEE802.11 n) SISO extension of R&S°CMW-KM650	R&S°CMW-KM651	1203.9159.02	1	2	1
TX Measurement, Mobile WiMAX™ (IEEE802.16e)	R&S®CMW-KM700	1202.6604.02	1	2	1
TX Measurement, Mobile WiMAX™ (IEEE802.16e), R&D Extension of R&S°CMW-KM700	R&S°CMW-KM701	1202.6610.02	1	2	1
TX Measurement, TD-SCDMA, Uplink	R&S®CMW-KM750	1203.2554.02	1	2	1
TX Measurement, CDMA2000® 1xRTT, Reverse Link	R&S®CMW-KM800	1203.2602.02	1	2	1
TX Measurement, 1xEV-DO, Reverse Link	R&S®CMW-KM880	1203.2854.02	1	2	1

Designation	Туре	Order No.	R&S® CMW500		R&S® CMW280
			Single (qty.)	Dual (qty.)	Single (qty.)
Generator personalities, optional					
Generator, GSM/GPRS/EDGE, Downlink	R&S®CMW-KG200	1203.0500.02	1	2	1
Generator, WCDMA, Downlink	R&S®CMW-KG400	1203.0651.02	1	2	1
Generator, WCDMA HSPA Extension of R&S°CMW-KG400, Downlink	R&S®CMW-KG401	1203.2902.02	1	2	1
Enable R&S®WinIQSIM2™ waveforms, optional					
Enable R&S®WinIQSIM2™ Waveforms, GSM/EDGE	R&S®CMW-KW200	1203.0951.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, WCDMA	R&S®CMW-KW400	1203.1006.02	1	2	1
Enable R&S°WinIQSIM2™ Waveforms, WCDMA, HSDPA Extension of R&S°CMW-KG400	R&S®CMW-KW401	1203.1058.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, WCDMA, HSUPA Extension of R&S®CMW-KG401	R&S®CMW-KW402	1203.1106.02	1	2	1
Enable R&S°WinIQSIM2™ Waveforms, WCDMA, HSPA+ Extension of R&S°CMW-KW401 or R&S°CMW-KW402	R&S®CMW-KW403	1203.9059.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, LTE FDD and LTE TDD (TD-LTE)	R&S®CMW-KW500	1203.5553.02	1	2	1
Enable R&S°WinIQSIM2™ Waveforms, Bluetooth°, Basic Rate and EDR	R&S®CMW-KW610	1203.6408.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, GPS	R&S®CMW-KW620	1203.6008.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, DVB	R&S®CMW-KW630	1203.6050.02	1	2	1
Enable R&S°WinIQSIM2™ Waveforms, WLAN (IEEE 802.11a/b/g)	R&S®CMW-KW650	1203.1258.02	1	2	1
Enable WinIQSIM2™ Waveforms, WLAN (IEEE802.11 n) Extension of R&S°CMW-KW650	R&S®CMW-KW651	1203.9259.02	1	2	1
Enable R&S°WinIQSIM2 $^{\text{\tiny{TM}}}$ Waveforms, WiMAX $^{\text{\tiny{TM}}}$ (IEEE802.16)	R&S®CMW-KW700	1203.1358.02	A .	2	1
Enable R&S®WinIQSIM2™ Waveforms, TD-SCDMA	R&S®CMW-KW750	1203.1406.02	1	2	1
Enable R&S°WinIQSIM2™ Waveforms, TD-SCDMA Enhancements	R&S®CMW-KW751	1203.1458.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, CDMA2000®	R&S®CMW-KW800	1203.1506.02	1	2	1
Enable R&S®WinIQSIM2™ Waveforms, 1xEV-DO	R&S®CMW-KW880	1203.1558.02	1	2	1

Recommended extras, power sensors and PC-based &&S*CMW applications

Designation	Туре	Order No.
Recommended extras and power sensors	id meli	
R&S°CMWrun Sequencer Software Tool, General Purpose	R&S®CMW-KT051	1203.4157.02
R&S°CMWrun Sequencer Software Tool, WiMAX™	R&S®CMW-KT057	1203.4205.02
LC TFT Display, 17", 1280 × 1024, DVI-D and Analog Interface	R&S®PMC3	1082.6004.12
Keyboard with USB Interface (US character set)	R&S®PSL-Z2	1157.6870.04
Mouse with USB Interface (optical, with wheel)	R&S®PSL-Z10	1157.7060.04
19" Adapter, 4 HU, 1/1 for Design2000 Cabinets	R&S®ZZA-411	1096.3283.00
Average Power Sensor for Universal Use, 10 MHz to 18 GHz, 200 pW to 200 mW	R&S®NRP-Z21	1137.6000.02
Power Sensor Module, DC to 18 GHz	R&S®NRP-Z27	1169.4102.02
Level Control Sensor, 10 MHz to 18 GHz for Signal Generators	R&S®NRP-Z28	1170.8008.02
Documentation of Calibration Values	R&S®DCV-2	0240.2193.08
PC-based R&S®CMW applications	R&S®CMWPC	1201.0002K90
Mandatory		
USB Smartcard for PC-based R&S®CMW Applications	R&S®CMW-S089A	1202.7900.02
Optional		
R&S°CMWrun Sequencer Software Tool, General Purpose	R&S®CMW-KT051	1203.4157.02
R&S°CMWrun Sequencer Software Tool, WiMAX™	R&S°CMW-KT057	1203.4205.02

Your local Rohde & Schwarz expert will help you to find the solution that is optimally suited to your requirements and will be glad to prepare a custom offer for you.

To find your nearest Rohde & Schwarz representative, visit: www.sales.rohde-schwarz.com

Service you can rely on

- Uncompromising quality
- Long-term dependability

About Rohde & Schwarz

Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Regional contact

Europe, Africa, Middle East +49 1805 12 42 42* or +49 89 4129 137 74 customersupport@rohde-schwarz.com North America 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com Latin America +1 410 910 79 88 customersupport.la@rohde-schwarz.com Asia/Pacific

+65 65 13 04 88

customersupport.asia@rohde-schwarz.com

ISO 9001

Certified Environmental System ISO 14001

For data sheet, see PD 5213.9211.22 and www.rohde-schwarz.com

Quality Second User Test Edulories, it

Rohde & Schwarz GmbH & Co. KG

Mühldorfstraße 15 | 81671 München Phone +498941290 | Fax +4989412912164

www.rohde-schwarz.com

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners | Printed in Germany (ch) PD 5213.9211.12 | Version 04.00 | July 2009 | R&S°CMW500 Data without tolerance limits is not binding | Subject to change

*0.14 €/min within German wireline network; rates may vary in other networks (wireline and mobile) and countries.