
Programmer's Guide

ps4000apg.en-7

PC Oscilloscopes

PicoScope® 4000 Series (A API)

PicoScope 4000 Series (A API) Programmer's Guide Contents

3Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

Contents
1 Welcome ... 7

2 Introduction .. 8

1 License agreement ... 8

2 Trademarks ... 8

3 System requirements ... 9

4 Installation instructions ... 9

3 Programming with the ps4000a API .. 10

1 Driver .. 10

2 Voltage ranges ... 11

3 Channel selection .. 11

4 Triggering .. 12

5 Downsampling ... 13

6 Sampling modes .. 14

1 Block mode ... 15

2 Rapid block mode .. 16

3 Streaming mode .. 21

4 Retrieving stored data .. 23

7 Timebases .. 24

8 Combining several oscilloscopes ... 24

9 Handling PicoConnect probe interactions ... 26

4 API functions ... 27

1 ps4000aChangePowerSource() – handle dual-port USB powering .. 28

2 ps4000aCloseUnit() – close a scope device ... 30

3 ps4000aCurrentPowerSource() – read current power source ... 31

4 ps4000aEnumerateUnits() – find out how many units are connected .. 32

5 ps4000aFlashLed() – flash the front-panel LED ... 33

6 ps4000aGetAnalogueOffset() – find the allowable analog offset range ... 34

7 ps4000aGetChannelInformation() – find out if extra ranges available ... 35

8 ps4000aGetCommonModeOverflow() – find out which channels have overflowed 36

9 ps4000aGetDeviceResolution() – query the ADC resolution ... 37

10 ps4000aGetMaxDownSampleRatio() – find out downsampling ratio for data ... 38

11 ps4000aGetMaxSegments() – get maximum number of memory segments .. 39

12 ps4000aGetMinimumTimebaseStateless() – query shortest timebase .. 40

13 ps4000aGetNoOfCaptures() – get number of rapid block captures ... 41

14 ps4000aGetNoOfProcessedCaptures() – get number of downsampled rapid block captures 42

15 ps4000aGetStreamingLatestValues() – get streaming data while scope is running 43

16 ps4000aGetTimebase() – find out what timebases are available ... 44

17 ps4000aGetTimebase2() – find out what timebases are available .. 45

18 ps4000aGetTriggerTimeOffset() – read trigger timing adjustments (32-bit) ... 46

PicoScope 4000 Series (A API) Programmer's Guide Contents

4Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

19 ps4000aGetTriggerTimeOffset64() – read trigger timing adjustments (64-bit) ... 48

20 ps4000aGetUnitInfo() – read information about scope device .. 49

21 ps4000aGetValues() – retrieve block-mode data .. 50

22 ps4000aGetValuesAsync() – retrieve block or streaming data ... 52

23 ps4000aGetValuesBulk() – retrieve more than one waveform at a time ... 53

24 ps4000aGetValuesOverlapped() – retrieve data in overlapping blocks .. 55

1 Using the GetValuesOverlapped functions ... 56

25 ps4000aGetValuesOverlappedBulk() – retrieve overlapping data from multiple segments 57

26 ps4000aGetValuesTriggerTimeOffsetBulk() – get trigger timing adjustments (multiple) 58

27 ps4000aGetValuesTriggerTimeOffsetBulk64() – get trigger timing adjustments (multiple) 60

28 ps4000aIsLedFlashing() – read status of LED ... 61

29 ps4000aIsReady() – poll the driver in block mode ... 62

30 ps4000aIsTriggerOrPulseWidthQualifierEnabled() – find out whether trigger is enabled 63

31 ps4000aMaximumValue() – get maximum allowed sample value .. 64

32 ps4000aMemorySegments() – divide scope memory into segments .. 65

33 ps4000aMinimumValue() – get minimum allowed sample value .. 66

34 ps4000aNoOfStreamingValues() – get number of samples in streaming mode 67

35 ps4000aNearestSampleIntervalStateless() – find nearest available sampling interval 68

36 ps4000aOpenUnit() – open a scope device ... 69

37 ps4000aOpenUnitAsync() – open a scope device without waiting ... 70

38 ps4000aOpenUnitAsyncWithResolution() – open a flexible-resolution scope ... 71

39 ps4000aOpenUnitProgress() – check progress of OpenUnit() call ... 72

40 ps4000aOpenUnitWithResolution() – open a flexible-resolution scope ... 73

41 ps4000aPingUnit() – check that unit is responding ... 74

42 ps4000aQueryOutputEdgeDetect() – query special trigger mode ... 75

43 ps4000aRunBlock() – start block mode ... 76

44 ps4000aRunStreaming() – start streaming mode .. 78

45 ps4000aSetBandwidthFilter() – enable the bandwidth limiter .. 80

46 ps4000aSetCalibrationPins() – set up the CAL output pins ... 81

47 ps4000aSetChannel() – set up input channels ... 82

48 ps4000aSetDataBuffer() – register data buffer with driver ... 84

49 ps4000aSetDataBuffers() – register min/max data buffers with driver .. 85

50 ps4000aSetDeviceResolution() – set up a FlexRes scope .. 86

51 ps4000aSetEts() – set up equivalent-time sampling (ETS) ... 87

52 ps4000aSetEtsTimeBuffer() – set up 64-bit buffer for ETS time data ... 88

53 ps4000aSetEtsTimeBuffers() – set up 32-bit buffers for ETS time data .. 89

54 ps4000aSetNoOfCaptures() – set number of rapid block captures .. 90

55 ps4000aSetOutputEdgeDetect() – set special trigger mode .. 91

56 ps4000aSetProbeInteractionCallback() – register callback function for PicoConnect events 92

57 ps4000aSetPulseWidthQualifierConditions() – set up pulse width triggering .. 93

58 ps4000aSetPulseWidthQualifierProperties() – set up pulse width triggering .. 94

59 ps4000aSetSigGenArbitrary() – set up arbitrary waveform generator .. 95

1 AWG index modes ... 98

PicoScope 4000 Series (A API) Programmer's Guide Contents

5Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

2 Calculating deltaPhase .. 98

60 ps4000aSetSigGenBuiltIn() – set up function generator ... 100

61 ps4000aSetSigGenPropertiesArbitrary() – set up arbitrary waveform generator 102

62 ps4000aSetSigGenPropertiesBuiltIn() – set up function generator .. 103

63 ps4000aSetSimpleTrigger() – set up level triggers only .. 104

64 ps4000aSetTriggerChannelConditions() – specify which channels to trigger on 105

1 PS4000A_CONDITION structure ... 106

65 ps4000aSetTriggerChannelDirections() – set up signal polarities for triggering 107

1 PS4000A_DIRECTION structure .. 108

66 ps4000aSetTriggerChannelProperties() – set up trigger thresholds .. 109

1 PS4000A_TRIGGER_CHANNEL_PROPERTIES structure .. 110

67 ps4000aSetTriggerDelay() – set up post-trigger delay ... 112

68 ps4000aSigGenArbitraryMinMaxValues() – get AWG sample value limits ... 113

69 ps4000aSigGenFrequencyToPhase() – get phase increment for signal generator 114

70 ps4000aSigGenSoftwareControl() – trigger the signal generator .. 115

71 ps4000aStop() – stop data capture ... 116

72 Callback functions ... 117

1 ps4000aBlockReady() – receive notification when block-mode data ready 117

2 ps4000aDataReady() – indicate when post-collection data ready .. 118

3 ps4000aProbeInteractions() – callback for PicoConnect probe events .. 119

4 ps4000aStreamingReady() – indicate when streaming-mode data ready 121

73 Wrapper functions .. 122

1 Streaming mode .. 122

2 Advanced triggers ... 123

3 Probe interactions ... 123

5 Reference ... 125

1 Driver status codes .. 125

2 Enumerated types and constants ... 125

3 Numeric data types .. 125

4 Glossary .. 125

Index ... 127

Welcome

7Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

1 Welcome
The PicoScope 4444, 4824 and 4000A Series of PC Oscilloscopes from Pico
Technology are compact, high-resolution scope units designed to replace
traditional benchtop oscilloscopes.

This Programmer's Guide explains how to use the ps4000a API, the
Application Programming Interface for the PicoScope 4000 Series (A API) and

PicoScope 4000A Series oscilloscopes. The ps4000a API supports the
following models:

· PicoScope 4444 4-channel differential oscilloscope (product web page)
· PicoScope 4824 8-channel oscilloscope (product web page)
· PicoScope 4224A 2-channel oscilloscope (product web page)
· PicoScope 4424A 4-channel oscilloscope (product web page)
· PicoScope 4824A 8-channel oscilloscope (product web page)

Other oscilloscopes in the PicoScope 4000 Series use an older API called ps4000. This is documented in the
original PicoScope 4000 Series Programmer's Guide.

https://www.picotech.com/oscilloscope/4444/picoscope-4444-overview
https://www.picotech.com/oscilloscope/4824/8-channel-oscilloscope
https://www.picotech.com/oscilloscope/picoscope-4000-series
https://www.picotech.com/oscilloscope/picoscope-4000-series
https://www.picotech.com/oscilloscope/picoscope-4000-series
http://www.picotech.com/document/pdf/ps4000pg.en-7.pdf

Introduction

8Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

2 Introduction

2.1 License agreement
The material contained in this release is licensed, not sold. Pico Technology Ltd grants a license to the person
who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of these
conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data collected using Pico products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all SDK materials (software,
documents, etc.) except the example programs. You may copy and distribute SDK files without restriction, as long
as you do not remove any Pico Technology copyright statements. The example programs may be modified,
copied and distributed for the purpose of developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever caused,
related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its equipment
or software is suitable for a given application. It is your responsibility, therefore, to ensure that the product is
suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other software
products. For this reason, one of the conditions of the license is that it excludes use in mission-critical
applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible for
virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical support staff,
who will try to fix the problem within a reasonable time. If you are still dissatisfied, please return the product and
software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our website at www.picotech.com. We reserve the right to
charge for updates or replacements sent out on physical media.

2.2 Trademarks
Pico Technology, PicoScope and PicoConnect are trademarks of Pico Technology Ltd, registered in the United
Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or trademarks of Microsoft
Corporation in the USA and other countries. LabVIEW is a registered trademark of National Instruments
Corporation. MATLAB is a registered trademark of The MathWorks, Inc.

Introduction

9Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

2.3 System requirements
To ensure that your PicoScope operates correctly, you must have a computer with at least the minimum system
requirements to run one of the supported operating systems, as shown in the following table. The performance of
the oscilloscope will be better with a more powerful PC, and will benefit from a multicore processor.

Item Specification

Operating system Windows 7, 8.1 or 10 (32-bit and 64-bit versions)
Linux and macOS, 64-bit versions only: see picotech.com/downloads for
supported versions

Processor
Memory
Free disk space

As required by the operating system

Ports USB 3.0 or USB 2.0 port(s)

USB

The ps4000a driver offers three different methods of recording data, all of which support USB 2.0 and USB 3.0.
The fastest transfer rates between the PC and the PicoScope device are achieved using USB 3.0.

2.4 Installation instructions
The PicoSDK installation process varies depending on your operating system. Software and installation
instructions are available from picotech.com/downloads.

Windows users
Visit picotech.com/downloads, select your oscilloscope from the list and download the latest PicoSDK installer,
choosing either the 32-bit or 64-bit version depending on your operating system and software development
environment.

macOS users
If you have already installed PicoScope 6 Beta for macOS, you already have all the drivers installed. If not, visit
picotech.com/downloads, select your oscilloscope from the list and download and install the latest version.

Linux users
Visit Linux Software & Drivers for Oscilloscopes and Data Loggers for full instructions.

https://www.picotech.com/downloads
https://www.picotech.com/downloads
https://www.picotech.com/downloads
https://www.picotech.com/downloads
https://www.picotech.com/downloads/linux

Programming with the ps4000a API

10Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3 Programming with the ps4000a API
The ps4000a.dll dynamic link library in the lib subdirectory of your SDK installation allows you to program a
PicoScope 4000 Series (A API) oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

· Open the scope unit.
· Set up the input channels with the required voltage ranges and coupling mode.
· Set up triggering.
· Start capturing data. (See Sampling modes, where programming is discussed in more detail.)
· Wait until the scope unit is ready.
· Stop capturing data.
· Copy data to a buffer.
· Close the scope unit.

Numerous example programs are available on the "picotech" GitHub pages. These show how to use the functions
of the driver software in each of the modes available.

3.1 Driver
Microsoft Windows

Your application will communicate with a PicoScope 4000 Series library called ps4000a.dll, which is supplied
in 32-bit and 64-bit versions. The DLL exports the ps4000a function definitions in stdcall format, which is
compatible with a wide range of programming languages.

ps4000a.dll driver depends on another DLL, picoipp.dll (which is supplied in 32-bit and 64-bit versions)

and a low-level driver called WinUsb.sys (or CyUsb3.sys on Windows 7). These are installed by PicoSDK and
configured when you plug the oscilloscope into each USB port for the first time. Your application does not call
these drivers directly.

Linux and macOS
Please see the Downloads section of picotech.com for instructions on downloading the drivers for these

operating systems. The drivers use the cdecl calling convention. Linux libraries and dependencies are
distributed via our package repositories. macOS libraries and dependencies are distributed with PicoScope 6 for
macOS.

https://github.com/picotech
https://www.picotech.com/downloads
https://www.picotech.com/downloads

Programming with the ps4000a API

11Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.2 Voltage ranges
ps4000aSetChannel() allows you to set the voltage range of each input channel of the scope. The allowable
voltage ranges are described in the device data sheet. Each sample is normalized to 16 bits, and the minimum

and maximum values returned to your application are given by ps4000aMinimumValue() and

ps4000aMaximumValue() as follows:

Function
Reading

Voltage
decimal hex

ps4000aMinimumValue() –32 767 8001 minimum

N/A 0 0000 zero

ps4000aMaximumValue() +32 767 7FFF maximum

Example

1. Call ps4000aSetChannel()

with range set to

PS4000A_1V.

2. Apply a sine wave input of
500 mV amplitude to the
oscilloscope.

3. Capture some data using the
desired sampling mode.

4. The data will be encoded as
shown opposite.

3.3 Channel selection
You can switch each channel on and off, and set its coupling mode to either AC or DC, using the

ps4000aSetChannel() function.

· DC coupling: The scope accepts all input frequencies from zero (DC) up to its maximum analog
bandwidth.

· AC coupling: The scope accepts input frequencies from a few hertz up to its maximum analog
bandwidth. The lower –3 dB cutoff frequency is about 1 Hz.

Programming with the ps4000a API

12Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.4 Triggering
PicoScope 4000 Series PC Oscilloscopes can either start collecting data immediately, or be programmed to wait
for a trigger event to occur. In both cases you need to use the PicoScope 4000 trigger functions:

· ps4000aSetTriggerChannelConditions() – specifies which channels are included in the trigger
logic

· ps4000aSetTriggerChannelDirections() – specifies the edge or threshold to be used for each
channel

· ps4000aSetTriggerChannelProperties() – specifies threshold levels, level or window mode, and
global trigger timeout

· ps4000aSetTriggerDelay() – defines post-trigger delay (optional)

Alternatively, the above functions can be run in a single operation by calling ps4000aSetSimpleTrigger().

A trigger event can occur when one of the input channels crosses a threshold voltage on either a rising or a falling
edge. It is also possible to combine up to four inputs by defining multiple trigger conditions.

The driver supports these triggering methods:

· Simple Edge
· Advanced Edge
· Windowing
· Pulse width
· Logic
· Delay
· Drop-out
· Runt

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width qualifier
functions:

· ps4000aSetPulseWidthQualifierConditions()

· ps4000aSetPulseWidthQualifierProperties()

Programming with the ps4000a API

13Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.5 Downsampling
The driver can optionally apply a data reduction, or downsampling, process before returning data to the
application. Downsampling is done by firmware on the device and is generally faster than using the PC's own

processor. You instruct the driver to downsample by passing a downSampleRatioMode argument to one of the

data-retrieval functions such as ps4000aGetValues(). You must also pass in an argument called

downSampleRatio: how many raw samples are to be combined into each processed sample.

Retrieving multiple types of downsampled data
You can optionally retrieve data using more than one downsampling mode with a single call to

ps4000aGetValues(). Set up a buffer for each downsampling mode by calling

ps4000aSetDataBuffer(). Then, when calling ps4000aGetValues(), set downSampleRatioMode to
the bitwise OR of the required downsampling modes.

Retrieving both raw and downsampled data
You cannot retrieve raw data and downsampled data in a single operation. If you require both raw and
downsampled data, first retrieve the downsampled data as described above and then continue as follows:

1. Call ps4000aStop().

2. Set up a data buffer for each channel using ps4000aSetDataBuffer() with the ratio mode set to

PS4000A_RATIO_MODE_NONE.

3. Call ps4000aGetValues() to retrieve the data.

Downsampling modes
The available downsampling modes are:

PS4000A_RATIO_MODE_NONE (0)

No downsampling is performed. The downSampleRatio parameter is ignored.

PS4000A_RATIO_MODE_AGGREGATE (1)

The aggregate method generates two buffers of data for every channel, one containing the minimum sample

value for every block of downSampleRatio raw samples, and the other containing the maximum value.

PS4000A_RATIO_MODE_DECIMATE (2)

The decimate method returns the first sample in every block of downSampleRatio successive samples
and discards all the other samples.

PS4000A_RATIO_MODE_AVERAGE (4)

The average method returns the sum of all the samples in each block of downSampleRatio samples,
divided by the length of the block.

PS4000A_RATIO_MODE_DISTRIBUTION (8)

Reserved for future use.

Programming with the ps4000a API

14Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6 Sampling modes
The PicoScope 4000 Series PC Oscilloscopes can run in various sampling modes.

· Block mode. In this mode, the scope stores data in internal buffer memory and then transfers it to the PC.
When the data has been collected it is possible to examine the data, with an optional downsampling factor.
The data is lost when a new run is started in the same segment, the settings are changed, or the scope is
powered down.

· Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at a
time with a minimum of delay between captures. You can use downsampling in this mode if you wish.

· Streaming mode. In this mode, data is passed directly to the PC without being stored in the scope's internal
buffer memory. This enables long periods of slow data collection for chart recorder and data-logging
applications. Streaming mode provides fast streaming at up to 160 MS/s with a USB 3.0 connection.
Downsampling and triggering are supported in this mode.

Data callbacks
In all sampling modes, the driver returns data asynchronously using a callback. This is a call to one of the
functions in your own application. When you request data from the scope, you pass to the driver a pointer to your
callback function. When the driver has written the data to your buffer, it makes a callback (calls your function) to
signal that the data is ready. The callback function then signals to the application that the data is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread, you must
ensure that it does not corrupt any global variables while it runs.

In block mode, you can alternatively poll the driver instead of using a callback.

Most of the callback functions have a PICO_STATUS parameter. The driver sends this value to the callback
function to indicate the success or otherwise of the data capture.

Probe callback
The driver can be instructed to signal to your application whenever a probe connection event occurs. It does this
using a callback to a function that you define. See Handling PicoConnect probe interactions.

Programming with the ps4000a API

15Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6.1 Block mode

In block mode, the computer prompts a PicoScope 4000 Series PC Oscilloscope to collect a block of data into its
internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then
transfers the whole block to the computer's memory through the USB port.

· Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each is allocated
half the memory. These features are handled transparently by the driver. The block size also depends on the

number of memory segments in use (see ps4000aMemorySegments()).

· Sampling rate. The maximum real-time sampling rate may depend on the number of channels enabled. See
the data sheet for your scope model. You specify the sampling rate by passing a timebase number (see

Timebases) to ps4000aRunBlock().

· Setup time. The driver normally performs a number of setup operations, which can take up to 50 milliseconds,
before collecting each block of data. If you need to collect data with the minimum time interval between

blocks, use rapid block mode and avoid calling setup functions between calls to ps4000aRunBlock(),

ps4000aStop() and ps4000aGetValues().

· Downsampling. When the data has been collected, you can set an optional downsampling factor and examine
the data. Downsampling is the process of reducing the amount of data by combining adjacent samples using
one of several algorithms. It is useful for zooming in and out of the data without having to repeatedly transfer
the entire contents of the scope's buffer to the PC.

· Memory segmentation. The scope's internal memory can be divided into segments so that you can capture

several waveforms in succession. Configure this using ps4000aMemorySegments().

· Data retention. The data is lost when a new run is started in the same segment, the number of segments is
changed, or the scope is powered down.

3.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a single memory segment:

1. Open the oscilloscope using ps4000aOpenUnit().
1a. (PicoScope 4444 only) Register your probe interaction callback function using

ps4000aSetProbeInteractionCallback().

2. Select channel ranges and AC/DC coupling using ps4000aSetChannel().

3. Using ps4000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps4000aSetTriggerChannelConditions(),

ps4000aSetTriggerChannelDirections(), ps4000aSetTriggerChannelProperties()

and ps4000aSetTriggerDelay() to set up the trigger if required.

5. Start the oscilloscope running using ps4000aRunBlock().

6. Wait until the oscilloscope is ready using the ps4000aBlockReady() callback.

7. Use ps4000aSetDataBuffer() to tell the driver where your memory buffer is. For greater efficiency
when doing multiple captures, you can call this function outside the loop, after step 4.

8. Transfer the block of data from the oscilloscope using ps4000aGetValues().
9. Display the data.
10. Repeat steps 5 to 9.

11. Stop the oscilloscope using ps4000aStop().
12. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

13. Close the device using ps4000aCloseUnit().

Programming with the ps4000a API

16Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Note that if you use ps4000aGetValues() or ps4000aStop() before the oscilloscope is ready, no capture

will be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

3.6.1.2 Asynchronous calls in block mode

ps4000aGetValues() function may take a long time to complete if a large amount of data is being collected.

To avoid hanging the calling thread, it is possible to call ps4000aGetValuesAsync() instead. This
immediately returns control to the calling thread, which then has the option of waiting for the data or calling

ps4000aStop() to abort the operation.

3.6.2 Rapid block mode

In normal block mode, the PicoScope 4000 Series scopes collect one waveform at a time. You start the the
device running, wait until all samples are collected by the device, and then download the data to the PC or start
another run. There is a time overhead of tens of milliseconds associated with starting a run, causing a gap
between waveforms. When you collect data from the device, there is another minimum time overhead which is
most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between
waveforms. On the PicoScope 4824, for example, it reduces the gap from milliseconds to about 2.5 µs.

3.6.2.1 Using rapid block mode

You can use rapid block mode with or without downsampling.

Without downsampling

1. Open the oscilloscope using ps4000aOpenUnit().
1a. (PicoScope 4444 only) Register your probe interaction callback function using

ps4000aSetProbeInteractionCallback().

2. Select channel ranges and AC/DC coupling using ps4000aSetChannel().
3. Set the number of memory segments equal to or greater than the number of captures required using

ps4000aMemorySegments(). Use ps4000aSetNoOfCaptures() before each run to specify the
number of waveforms to capture.

Programming with the ps4000a API

17Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4. Using ps4000aGetTimebase(), select timebases until the required nanoseconds per sample is
located. This will indicate the number of samples per channel available for each segment. If you know that
the number of samples per segment will not exceed the limit, you can call this function after step 2.

5. Use the trigger setup functions ps4000aSetTriggerChannelConditions(),

ps4000aSetTriggerChannelDirections(), ps4000aSetTriggerChannelProperties()

and ps4000aSetTriggerDelay() to set up the trigger if required.

6. Start the oscilloscope running using ps4000aRunBlock(). You can call

ps4000aGetNoOfCaptures() while capturing is in progress to obtain a count of the number of
waveforms captured. Once all the waveforms have been captured, but ready is not complete, call

ps4000aGetNoOfProcessedCaptures() to obtain the number of captures processed on the PC.

7. Wait until the oscilloscope is ready using the ps4000aBlockReady() callback.

8. Use ps4000aSetDataBuffer() to tell the driver where your memory buffers are. Call the function once
for each channel/segment combination for which you require data. For greater efficiency when doing
multiple captures, you can call this function outside the loop, after step 5.

9. Transfer the blocks of data from the oscilloscope using ps4000aGetValuesBulk().
10. Retrieve the time offset for each data segment using

ps4000aGetValuesTriggerTimeOffsetBulk64().
11. Display the data.
12. Repeat steps 6 to 11 if necessary.

13. Stop the oscilloscope using ps4000aStop().

14. Close the device using ps4000aCloseUnit().

With downsampling
To use rapid block mode with downsampling (in aggregation mode), follow steps 1 to 7 above and then proceed
as follows:

8a. Call ps4000aSetDataBuffers() to set up one pair of buffers for every waveform segment required.

9a. Call ps4000aGetValues() for each pair of buffers.

10a. Retrieve the time offset for each data segment using ps4000aGetTriggerTimeOffset64().

Continue from step 11 above.

Programming with the ps4000a API

18Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device as usual:

· Open the device
· Channels
· Trigger
· Number of memory segments (this should be equal or more than the number of captures required)

// Set the number of waveforms to MAX_WAVEFORMS

ps4000aSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

ps4000aRunBlock

(

handle,

0, // noOfPreTriggerSamples

10000, // noOfPostTriggerSamples

1, // timebase to be used

&timeIndisposedMs, // calculated duration of capture

0, // segmentIndex

lpReady,

&pParameter

);

· Get number of captures. Call ps4000aGetNoOfCaptures() to find out the number of captures taken by the
device. This is particularly useful if a trigger is being used.

Comment: these variables have been set as an example and can be any valid value. pParameter will be set true

by your callback function lpReady.

while (!pParameter) Sleep (0);

int16_t buffer[PS4000A_MAX_CHANNELS][MAX_WAVEFORMS][MAX_SAMPLES];

for (int32_t i = 0; i < 20; i++)

{

for (int32_t c = PS4000A_CHANNEL_A; c <= PS4000A_CHANNEL_H; c++)

{

ps4000aSetDataBuffer

(

handle,

c,

buffer[c][i],

MAX_SAMPLES,

i,

PS4000A_RATIO_MODE_NONE

);

}

}

Programming with the ps4000a API

19Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Comments: buffer has been created as a three-dimensional 16-bit integer array, which will contain 1000 samples

as defined by MAX_SAMPLES. There are only 20 buffers set, but it is possible to set up to the number of captures
you have requested.

ps4000aGetValuesBulk

(

handle,

&noOfSamples,

10, // fromSegmentIndex

19, // toSegmentIndex

1, // downSampleRatio

PS4000A_RATIO_MODE_NONE, // downSampleRatioMode

overflow // indices 10 to 19 will be populated

)

Comments: the number of samples could be up to noOfPreTriggerSamples +

noOfPostTriggerSamples, the values set in ps4000aRunBlock(). The samples are always returned from

the first sample taken, unlike the ps4000aGetValues() function which allows the sample index to be set.
This function does not support downsampling. The above segments start at 10 and finish at 19 inclusive. It is

possible for the fromSegmentIndex to wrap around to the toSegementIndex, by setting the

fromSegmentIndex to 98 and the toSegmentIndex to 7.

ps4000aGetValuesTriggerTimeOffsetBulk64

(

handle,

times, // indices 10 to 19 will be populated

timeUnits, // indices 10 to 19 will be populated

10, // fromSegmentIndex, inclusive

19 // toSegmentIndex, inclusive

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the fromSegmentIndex

to wrap around to the toSegmentIndex, if the fromSegmentIndex is set to 98 and the toSegmentIndex
to 7.

Programming with the ps4000a API

20Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device as usual:

· Open the device
· Channels
· Trigger
· Number of memory segments (this should be equal or more than the number of captures required)

// Set the number of waveforms to MAX_WAVEFORMS

ps4000aSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

ps4000aRunBlock

(

handle,

0, // noOfPreTriggerSamples

1000000, // noOfPostTriggerSamples

1, // timebase to be used

&timeIndisposedMs, // calculated duration of capture

1, // segmentIndex

lpReady,

&pParameter

);

· Get number of captures. Call ps4000aGetNoOfCaptures() to find out the number of captures taken by the
device. This is particularly useful if a trigger is being used.

Comments: the set-up for running the device is exactly the same whether or not you use downsampling when you
retrieve the samples.

for (int32_t segment = 10; segment < 20; segment++)

{

for (int32_t c = PS4000A_CHANNEL_A; c <= PS4000A_CHANNEL_H; c++)

{

ps4000aSetDataBuffers

(

handle,

c,

bufferMax[c],

bufferMin[c]

MAX_SAMPLES,

segment,

downSampleRatioMode // set to RATIO_MODE_AGGREGATE

);

}

ps4000aGetValues

(

handle,

0,

Programming with the ps4000a API

21Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

&noOfSamples, // set to MAX_SAMPLES on entering

1000,

downSampleRatioMode, // set to RATIO_MODE_AGGREGATE

segment,

overflow

);

ps4000aGetTriggerTimeOffset64

(

handle,

&time,

&timeUnits,

segment

)

}

Comments: each waveform is retrieved one at a time from the driver, with an aggregation of 1000. Since only one
waveform will be retrieved at a time, you only need to set up one pair of buffers: one for the maximum samples
and one for the minimum samples. Again, the buffer sizes are 1000 samples.

3.6.3 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using block mode. It can
transfer data to the PC at speeds of up to 160 MS/s for the PicoScope 4824 and 4000A Series, or up to 100 MS/s
for the PicoScope 4444, depending on the computer's performance. This makes it suitable for high-speed data
acquisition, allowing you to capture long data sets limited only by the computer's memory.

Downsampling
The driver returns downsampled readings while the device is streaming. If the downsampling ratio is set to 1, only
one buffer is returned per channel. When the downsampling ratio is greater than 1 and aggregation mode is
selected, two buffers (maximum and minimum) per channel are returned.

Programming with the ps4000a API

22Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6.3.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode:

1. Open the oscilloscope using ps4000aOpenUnit().
1a. (PicoScope 4444 only) Register your probe interaction callback function using

ps4000aSetProbeInteractionCallback().

2. Select channels, ranges and AC/DC coupling using ps4000aSetChannel().

3. Use the trigger setup functions [1] [2] [3] [4] to set up the trigger if required.

4. Call ps4000aSetDataBuffer() to tell the driver where your data buffer is.

5. Set up downsampling and start the oscilloscope running using ps4000aRunStreaming().

6. Call ps4000aGetStreamingLatestValues() to get data.

7. Process data returned to your application's function. This example is using autoStop, so after the driver
has received all the data points requested by the application, it stops the device streaming.

8. Call ps4000aStop(), even if autoStop is enabled.
9. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

10 Close the device using ps4000aCloseUnit().

Programming with the ps4000a API

23Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.6.4 Retrieving stored data

You can collect data from the ps4000a driver with a different downsampling factor when

ps4000aRunBlock() or ps4000aRunStreaming() has already been called and has successfully captured

all the data. Use ps4000aGetValuesAsync().

Programming with the ps4000a API

24Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.7 Timebases
The ps4000a API allows you to select any of 232 different timebases created by dividing the oscilloscope's
master sampling clock. The timebases allow slow enough sampling in block mode to overlap the streaming
sample intervals, so that you can make a smooth transition between block mode and streaming mode. Calculate

the timebase using ps4000aGetTimebase() or refer to the following tables:

PicoScope 4444

Timebase (n) Sampling interval (tS)

= 2.5 ns x 2n

Sampling frequency (fS)

= 400 MHz / (n+1)

0 * 2.5 ns 400 MHz

1 * 5 ns 200 MHz

2 * 10 ns 100 MHz

3 20 ns 50 MHz

= 20 ns x (n–2) = 50 MHz / (n–2)

4 40 ns 25 MHz

...

232–1 ~ 11 s ~ 93 mHz

* 12-bit sampling mode only

PicoScope 4824 and 4000A Series

Timebase (n) Sampling interval (tS)

= 12.5 ns × (n+1)

Sampling frequency (fS)

= 80 MHz / (n+1)

0 12.5 ns 80 MHz

1 25 ns 40 MHz

...

232–1 ~54 s ~18.6 mHz

Notes
1. The maximum possible sampling rate may depend on the number of enabled channels and (for flexible-

resolution scopes) the selected ADC resolution. Refer to the data sheet for details.

2. In streaming mode, the maximum possible sampling rate may be limited by the speed of the USB interface.

3.8 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 4000 Series PC Oscilloscopes at the same time, depending
on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port.

ps4000aOpenUnit() returns a handle to an oscilloscope. All the other functions require this handle for
oscilloscope identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps4000aBlockReady(...)

// Define callback function specific to application

handle1 = ps4000aOpenUnit()

handle2 = ps4000aOpenUnit()

ps4000aSetChannel(handle1) // set up unit 1

ps4000aRunBlock(handle1)

ps4000aSetChannel(handle2) // set up unit 2

ps4000aRunBlock(handle2)

// Data will be stored in buffers

Programming with the ps4000a API

25Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

// and application will be notified using callback.

ready = FALSE

while not ready

ready = handle1_ready

ready &= handle2_ready

ps4000aCloseUnit(handle1)

ps4000aCloseUnit(handle2)

Note: It is not possible to synchronize the collection of data between oscilloscopes that are being used in
combination.

Programming with the ps4000a API

26Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

3.9 Handling PicoConnect probe interactions
The PicoScope 4444 has a PicoConnect™ intelligent probe interface. This interface supplies power to the probe
as well as allowing the scope to configure and interrogate the probe. Your application can choose to be alerted
whenever a probe is connected or disconnected, or when its status changes.

Probe interactions use a callback mechanism, available in C and similar languages. For languages that do not
support callbacks, use the wrapper functions provided.

Applicability PicoScope 4444 only

Note In addition to ps4000aApi.h, you must also include PicoConnectProbes.h. This file
contains definitions of enumerated types that describe the PicoConnect probes.

Procedure
1. Define your own function to receive probe interaction callbacks.

2. Call ps4000aOpenUnit() to obtain a device handle.

3. Call ps4000aSetProbeInteractionCallback() to register your probe interaction callback function.
4. Capture data using the desired sampling mode. See Sampling modes for details.

5. Call ps4000aCloseUnit() to release the device handle. The makes the scope device available to other
applications.

API functions

27Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4 API functions
The ps4000a API exports the following functions for you to use in your own applications. All functions are C

functions using the standard call naming convention (__stdcall). They are all exported with both decorated
and undecorated names.

API functions

28Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.1 ps4000aChangePowerSource() – handle dual-port
USB powering

PICO_STATUS ps4000aChangePowerSource

(

int16_t handle,

PICO_STATUS powerstate

)

This function selects the power supply mode.

Whenever the power supply mode is changed, all data and settings in the scope device are lost. You must then
reconfigure the device before restarting capture.

PicoScope 4444 only
The PicoScope 4444 can use DC power from either a USB 2.0 or a USB 3.0 port. USB 3.0 might be needed if the
probes connected draw enough supply current. If another function returns

PICO_PROBE_POWER_DC_POWER_SUPPLY_REQUIRED or

PICO_PROBE_NOT_POWERED_WITH_DC_POWER_SUPPLY, you must call this function to change to the correct
power source.

The PicoScope 4444 returns PICO_POWER_SUPPLY_NOT_CONNECTED if the DC power supply is not
connected.

All USB 3.0 devices (PicoScope 4824 and 4000A Series)
When the device is plugged into a non-USB 3.0 port, it requires a two-stage power-up sequence. You must call
this function if any of the following conditions arises:

· USB power is required.
· The power supply is connected or disconnected during use.
· A 2-channel USB 3.0 scope is plugged into a USB 2.0 port (indicated if any function returns the

PICO_USB3_0_DEVICE_NON_USB3_0_PORT status code).

If you receive the PICO_USB3_0_DEVICE_NON_USB3_0_PORT status code from one of the

ps4000aOpenUnit…() functions (ps4000aOpenUnit(), ps4000aOpenUnitWithResolution(),

ps4000aOpenUnitAsync() or ps4000aOpenUnitProgress()), you must then call

ps4000aChangePowerSource() to switch the device into non-USB 3.0-power mode.

Note. The PicoScope 4824 and 4000A Series have two power supply options:
1. To power them from a USB 3.0 port, use the USB 3.0 cable supplied.
2. To power them from a non-USB 3.0 port, use a double-headed USB 2.0 cable (available separately) and plug it

into two USB 2.0 ports on the host machine.

Applicability All modes

Arguments handle, identifier for the scope device.

powerstate, the required state of the unit.
USB 3.0 devices
Set to one of:

PICO_POWER_SUPPLY_CONNECTED
– to use power from the external power supply

PICO_POWER_SUPPLY_NOT_CONNECTED
– to use power from the USB port

PICO_USB3_0_DEVICE_NON_USB3_0_PORT
– to use power from a non-USB 3.0 port

API functions

29Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

USB 2.0 devices
Set to one of:

PICO_PROBE_POWER_DC_POWER_SUPPLY_REQUIRED
– to use external DC power

PICO_PROBE_NOT_POWERED_WITH_DC_POWER_SUPPLY
– to use USB power

Returns PICO_OK

PICO_POWER_SUPPLY_REQUEST_INVALID

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

PICO_INVALID_HANDLE

PICO_PROBE_POWER_DC_POWER_SUPPLY_REQUIRED

PICO_PROBE_NOT_POWERED_WITH_DC_POWER_SUPPLY

PICO_DRIVER_FUNCTION

PICO_FPGA_FAIL

PICO_INTERNAL_ERROR

PICO_MEMORY

PICO_NOT_RESPONDING

PICO_PROBE_CONFIG_FAILURE

PICO_RESOURCE_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

30Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.2 ps4000aCloseUnit() – close a scope device
PICO_STATUS ps4000aCloseUnit

(

int16_t handle

)

This function disconnects the PicoScope device from the ps4000a driver. Once disconnected, the device can
then be opened or enumerated by this or another application.

Applicability All modes

Arguments handle, identifier for the scope device.

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_DRIVER_FUNCTION

API functions

31Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.3 ps4000aCurrentPowerSource() – read current power
source

PICO_STATUS ps4000aCurrentPowerSource

(

int16_t handle

)

This function returns the current power state of the device.

PicoScope 4824 and 4000A Series: There is no need to call this function as the device has only one possible

state. Normally returns PICO_OK.

PicoScope 4444: Returns PICO_POWER_SUPPLY_NOT_CONNECTED if device is USB-powered; returns

PICO_POWER_SUPPLY_CONNECTED if DC power supply is connected.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

API functions

32Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.4 ps4000aEnumerateUnits() – find out how many
units are connected

PICO_STATUS ps4000aEnumerateUnits

(

int16_t * count,

int8_t * serials,

int16_t * serialLth

)

This function counts the number of PicoScope 4000 Series (A API) units connected to the computer, and returns
a list of serial numbers as a string. Note that this function will only detect devices that are not yet being controlled
by an application.

Applicability All modes

Arguments * count, on exit, the number of scopes found.

* serials, on exit, a list of serial numbers separated by commas and terminated by a final
null.

Example: AQ005/139,VDR61/356,ZOR14/107

* serialLth, on entry, the length of the int8_t buffer pointed to by serials; on exit,

the length of the string written to serials.

Returns PICO_OK

PICO_BUSY

PICO_NULL_PARAMETER

PICO_FW_FAIL

PICO_CONFIG_FAIL

PICO_MEMORY_FAIL

PICO_ANALOG_BOARD

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

API functions

33Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.5 ps4000aFlashLed() – flash the front-panel LED
PICO_STATUS ps4000aFlashLed

(

int16_t handle,

int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling thread. Calls to

ps4000aRunStreaming() and ps4000aRunBlock() cancel any flashing started by this function.

Applicability All modes

Arguments handle, identifier for the scope device.

start, the action required:
< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 : flash the LED start times. If the LED is already flashing on entry to this

function, the flash count will be reset to start.

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_BUSY

PICO_DRIVER_FUNCTION

PICO_MEMORY

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

API functions

34Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.6 ps4000aGetAnalogueOffset() – find the allowable
analog offset range

PICO_STATUS ps4000aGetAnalogueOffset

(

int16_t handle,

PICO_CONNECT_PROBE_RANGE range,

PS4000A_COUPLING coupling,

float * maximumVoltage,

float * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.

Applicability All modes

Arguments handle, identifier for the scope device.

range, the voltage range to be used when gathering the min and max information.

coupling, the type of AC/DC coupling used.

* maximumVoltage, on exit, the maximum voltage allowed for the range. Pointer may be

 NULL if not required.

* minimumVoltage, on exit, the minimum voltage allowed for the range. Pointer may be

NULL if not required. If both maximumVoltage and minimumVoltage are NULL, the

driver returns PICO_NULL_PARAMETER.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_VOLTAGE_RANGE

PICO_NULL_PARAMETER

PICO_MEMORY

PICO_INTERNAL_ERROR

API functions

35Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.7 ps4000aGetChannelInformation() – find out if extra
ranges available

PICO_STATUS ps4000aGetChannelInformation

(

int16_t handle,

PS4000A_CHANNEL_INFO info,

int32_t probe,

int32_t * ranges,

int32_t * length,

int32_t channels

)

This function queries which extra ranges are available on a scope device.

Applicability Reserved for future expansion

Arguments handle, identifier for the scope device.

info, the type of information required. The only value supported is:

PS4000A_CI_RANGES, returns the extra ranges available

probe, not used, must be set to 0.

* ranges, on exit, an array populated with available ranges for the given value of info.

May be NULL. See ps4000aSetChannel() for possible values.

* length, on entry: the length of the ranges array; on exit: the number of elements written

to ranges or, if ranges is NULL, the number of elements that would have been written.

channels, the channel for which the information is required. See

ps4000aSetChannel() for possible values.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

API functions

36Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.8 ps4000aGetCommonModeOverflow() – find out
which channels have overflowed

PICO_STATUS ps4000aGetCommonModeOverflow

(

int16_t handle,

uint16_t * overflow

)

On each channel of a differential oscilloscope, both the positive and negative differential input voltages must
remain within the specified limits to avoid measurement errors. These limits are independent of the differential
voltage limit, which is the maximum voltage difference allowed between the two inputs.

This function queries whether any channel has exceeded the common mode voltage limit.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

overflow, a set of flags that indicate whether a common-mode overflow has occurred on
any of the channels. It is a bit pattern with bit 0 denoting Channel A.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

PICO_BUSY

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

API functions

37Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.9 ps4000aGetDeviceResolution() – query the ADC
resolution

PICO_STATUS ps4000aGetDeviceResolution

(

int16_t handle,

PS4000A_DEVICE_RESOLUTION * resolution

)

This function retrieves the ADC resolution that is in use on the specified device.

Applicability PicoScope 4444 only

Arguments handle, the handle of the required device

* resolution, returns the resolution of the device. Values are defined by

PS4000A_DEVICE_RESOLUTION.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

API functions

38Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.10 ps4000aGetMaxDownSampleRatio() – find out
downsampling ratio for data

PICO_STATUS ps4000aGetMaxDownSampleRatio

(

int16_t handle,

uint32_t noOfUnaggregatedSamples,

uint32_t * maxDownSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given number of samples.

Applicability All modes

Arguments handle, identifier for the scope device.

noOfUnaggregatedSamples, the number of raw samples to be used to calculate the
maximum downsampling ratio.

* maxDownSampleRatio, on exit, the maximum possible downsampling ratio.

downSampleRatioMode, see Downsampling.

segmentIndex, the memory segment where the data is stored.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

PICO_DRIVER_FUNCTION

PICO_NOT_USED

PICO_BUSY

API functions

39Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.11 ps4000aGetMaxSegments() – get maximum number
of memory segments

PICO_STATUS ps4000aGetMaxSegments

(

int16_t handle,

uint32_t * maxSegments

)

This function retrieves the maximum number of memory segments allowed by the device.

Applicability All modes

Arguments handle, identifier for the scope device.

* maxSegments, on exit, the maximum possible number of memory segments. This
information can also be found in the data sheet for the device.

Returns PICO_OK

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

API functions

40Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.12 ps4000aGetMinimumTimebaseStateless() – query
shortest timebase

PICO_STATUS ps4000aGetMinimumTimebaseStateless

(

int16_t handle,

PS4000A_CHANNEL_FLAGS enabledChannelOrPortFlags,

uint32_t * timebase,

double * timeInterval,

PS4000A_DEVICE_RESOLUTION resolution

)

This function obtains details of the shortest (fastest) timebase available on the specified device with the
specified combination of enabled channels and resolution. It does not change any settings on the device.

Applicability

Arguments handle, identifier for the scope device.

enabledChannelOrPortFlags, a bit field (using bitwise-OR if necessary) indicating
which channels are enabled:

PS4000A_CHANNEL_A_FLAGS = 1

PS4000A_CHANNEL_B_FLAGS = 2

PS4000A_CHANNEL_C_FLAGS = 4

PS4000A_CHANNEL_D_FLAGS = 8

PS4000A_CHANNEL_E_FLAGS = 16

PS4000A_CHANNEL_F_FLAGS = 32

PS4000A_CHANNEL_G_FLAGS = 64

PS4000A_CHANNEL_H_FLAGS = 128

* timebase, on exit: the timebase number of the shortest possible timebase under the
specified conditions.

* timeInterval, on exit: the sample interval, in seconds, corresponding to the

timebase value.

resolution, the desired resolution mode.

Returns See picoStatus.h.

API functions

41Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.13 ps4000aGetNoOfCaptures() – get number of rapid
block captures

PICO_STATUS ps4000aGetNoOfCaptures

(

int16_t handle,

uint32_t * nCaptures

)

This function gets the number of captures collected in one run of rapid block mode. You can call it during device

capture, after collection has completed or after interrupting waveform collection by calling ps4000aStop().

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

* nCaptures, on exit, the number of waveforms captured.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

42Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.14 ps4000aGetNoOfProcessedCaptures() – get number
of downsampled rapid block captures

PICO_STATUS ps4000aGetNoOfProcessedCaptures

(

int16_t handle,

uint32_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid block mode. It enables
your application to start processing captured data while the driver is still transferring later captures from the
device to the computer.

The function returns the number of captures the driver has processed since you called ps4000aRunBlock(). It

is for use in rapid block mode, alongside ps4000aGetValuesOverlappedBulk(), when the driver is set to

transfer data from the device automatically as soon as the ps4000aRunBlock() function is called. You can

call ps4000aGetNoOfProcessedCaptures() during device capture, after collection has completed or after

interrupting waveform collection by calling ps4000aStop().

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments using

ps4000aGetValues(), or in a single call to ps4000aGetValuesBulk(), where it is used to calculate the

toSegmentIndex parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call ps4000aGetNoOfCaptures(), in order to determine

how many waveform segments were captured, before calling ps4000aGetValues() or

ps4000aGetValuesBulk().

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

* nProcessedCaptures, on exit, the number of waveforms captured and processed.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

API functions

43Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.15 ps4000aGetStreamingLatestValues() – get
streaming data while scope is running

PICO_STATUS ps4000aGetStreamingLatestValues

(

int16_t handle,

ps4000aStreamingReady lpPs4000Ready,

void * pParameter

)

This function is used to collect the next block of values while streaming is running. You must call

ps4000aRunStreaming() beforehand to set up streaming.

Applicability Streaming mode only

Arguments handle, identifier for the scope device.

lpPs4000Ready, a pointer to your ps4000aStreamingReady() callback function that
will return the latest downsampled values.

pParameter, a void pointer that will be passed to the ps4000aStreamingReady()
callback function.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_INVALID_CALL

PICO_BUSY

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_STREAMING_FAILED

API functions

44Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.16 ps4000aGetTimebase() – find out what timebases
are available

PICO_STATUS ps4000aGetTimebase

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

int32_t * timeIntervalNanoseconds,

int32_t * maxSamples

uint32_t segmentIndex

)

This function discovers which timebases are available on the oscilloscope. Set up the channels using

ps4000aSetChannel() first.

Applicability All modes

Arguments handle, identifier for the scope device.

timebase, a code between 0 and 232–1 that specifies the sampling interval (see
Timebases).

noSamples, the number of samples required.

* timeIntervalNanoseconds, on exit, the time interval between readings at the
selected timebase. If a null pointer is passed, nothing will be written here.

* maxSamples, on exit, the maximum number of samples available. The scope allocates a
certain amount of memory for internal overheads and this may vary depending on the
number of segments, number of channels enabled, and the timebase chosen. If this pointer
is null, nothing will be written here.

segmentIndex, the number of the memory segment to use.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SAMPLES

PICO_INVALID_CHANNEL

PICO_INVALID_TIMEBASE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_TIMEBASE

API functions

45Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.17 ps4000aGetTimebase2() – find out what timebases
are available

PICO_STATUS ps4000aGetTimebase2

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

float * timeIntervalNanoseconds,

int32_t * maxSamples,

uint32_t segmentIndex

)

This function is similar to ps4000aGetTimebase() except that it allows sub-nanosecond time sampling
intervals.

Applicability All modes

Arguments handle, timebase, noSamples, see ps4000aGetTimebase().

* timeIntervalNanoseconds, on exit, the time interval between samples at the
selected timebase. If a null pointer is passed, nothing will be written here.

maxSamples, segmentIndex, see ps4000aGetTimebase().

Returns See ps4000aGetTimebase().

API functions

46Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.18 ps4000aGetTriggerTimeOffset() – read trigger
timing adjustments (32-bit)

PICO_STATUS ps4000aGetTriggerTimeOffset

(

int16_t handle,

uint32_t * timeUpper,

uint32_t * timeLower,

PS4000A_TIME_UNITS * timeUnits,

uint32_t segmentIndex

)

This function gets the trigger time offset for waveforms in block mode or rapid block mode. The trigger time
offset is an adjustment value used for correcting jitter in the waveform, and is intended mainly for applications
that wish to display the waveform with reduced jitter. The offset is zero if the waveform crosses the threshold at
the trigger sampling instant, or a positive or negative value if jitter correction is required. The value should be
added to the nominal trigger time to get the corrected trigger time.

Call this function after data has been captured or when data has been retrieved from a previous capture.

This function is provided for use in programming environments that do not support 64-bit integers. Another

version of this function, ps4000aGetTriggerTimeOffset64(), is available that returns the time as a single
64-bit value.

API functions

47Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Applicability Block mode and rapid block mode

Arguments handle, identifier for the scope device.

* timeUpper, on exit, the upper 32 bits of the time at which the trigger point occurred.

* timeLower, on exit, the lower 32 bits of the time at which the trigger point occurred.

* timeUnits, on exit, the time units in which * timeUpper and * timeLower are
measured. The allowable values are:

PS4000A_FS

PS4000A_PS

PS4000A_NS

PS4000A_US

PS4000A_MS

PS4000A_S

segmentIndex, the number of the memory segment for which the information is required.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_TRIGGER_ERROR

PICO_FW_FAIL

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

API functions

48Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.19 ps4000aGetTriggerTimeOffset64() – read trigger
timing adjustments (64-bit)

PICO_STATUS ps4000aGetTriggerTimeOffset64

(

int16_t handle,

int64_t * time,

PS4000A_TIME_UNITS * timeUnits,

uint32_t segmentIndex

)

This function gets the trigger time offset for a waveform. It is equivalent to

ps4000aGetTriggerTimeOffset() except that the time offset is returned as a single 64-bit value instead
of two 32-bit values.

Applicability Block mode and rapid block mode

Arguments handle, identifier for the scope device.

* time, on exit, the time at which the trigger point occurred.

* timeUnits, on exit, the time units in which time is measured. See

ps4000aGetTriggerTimeOffset().

segmentIndex, the number of the memory segment for which the information is required.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_TRIGGER_ERROR

PICO_FW_FAIL

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

API functions

49Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.20 ps4000aGetUnitInfo() – read information about
scope device

PICO_STATUS ps4000aGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize,

PICO_INFO info

)

This function writes information about the specified scope device to a character string. If the device fails to open,
only the driver version and error code are available to explain why the last open unit call failed.

Applicability All modes

Arguments handle, identifier for the device. If handle is invalid, the error code from the last unit that
failed to open is returned.

string, the character string buffer in the calling function where the unit information string

(selected with info) will be stored. If a null pointer is passed, only requiredSize is
returned.

stringLength, the size of the character string buffer.

* requiredSize, on exit, the required character string buffer size.

info, an enumerated type specifying what information is required from the driver. Values
are listed below.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_INVALID_INFO

PICO_INFO_UNAVAILABLE

PICO_DRIVER_FUNCTION

PICO_INFO constant Example

0: PICO_DRIVER_VERSION, version number of ps4000a DLL 1.0.4.56

1: PICO_USB_VERSION, type of USB connection to device: 1.1, 2.0 or 3.0 3.0

2: PICO_HARDWARE_VERSION, hardware version of device 1

3: PICO_VARIANT_INFO, variant number of device 4824

4: PICO_BATCH_AND_SERIAL, batch and serial number of device KJ087/0006

5: PICO_CAL_DATE, calibration date of device 11Nov13

6: PICO_KERNEL_VERSION, version of kernel driver 1.0

7: PICO_DIGITAL_HARDWARE_VERSION, version of digital board 1

8: PICO_ANALOGUE_HARDWARE_VERSION, version of analog board 1

9: PICO_FIRMWARE_VERSION_1 1.4.0.0

10: PICO_FIRMWARE_VERSION_2 0.9.15.0

API functions

50Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.21 ps4000aGetValues() – retrieve block-mode data
PICO_STATUS ps4000aGetValues

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function retrieves block-mode data, either with or without downsampling, starting at the specified sample
number. It is used to get the stored data from the scope after data collection has stopped, and store it in a user

buffer previously passed to ps4000aSetDataBuffer() or ps4000aSetDataBuffers(). It blocks the
calling function while retrieving data.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will be

available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

API functions

51Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Applicability Block mode and rapid block mode

Arguments handle, identifier for the scope device.

startIndex, a zero-based index that indicates the start point for data collection. It is
measured in sample intervals from the start of the buffer.

* noOfSamples, on entry, the number of samples requested; on exit, the number of
samples actually retrieved.

downSampleRatio, the downsampling factor that will be applied to the raw data. Multiple

downsampling modes can be bitwise-ORed together, but the downSampleRatio must be
the same for all modes.

downSampleRatioMode, whether to use downsampling to reduce the amount of data.
See Downsampling.

segmentIndex, the zero-based number of the memory segment where the data is stored.

* overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on
any of the channels. It is a bit pattern, with bit 0 corresponding to Channel A.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_TOO_MANY_SAMPLES

PICO_DATA_NOT_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_NOT_RESPONDING

PICO_MEMORY

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_BUFFERS_NOT_SET

PICO_INVALID_PARAMETER

PICO_INVALID_SAMPLERATIO

PICO_ETS_NOT_RUNNING

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_RESOURCE_ERROR

API functions

52Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.22 ps4000aGetValuesAsync() – retrieve block or
streaming data

PICO_STATUS ps4000aGetValuesAsync

(

int16_t handle,

uint32_t startIndex,

uint32_t noOfSamples,

uint32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

void * lpDataReady,

void * pParameter

)

This function returns data, either with or without downsampling, starting at the specified sample number. It can
be used in block mode to retrieve data from the device, using a callback so as not to block the calling function. It
can also be used in streaming mode to retrieve data from the driver, but in this case it blocks the calling function.

Applicability Block mode and streaming mode

Arguments handle, identifier for the scope device.

startIndex, noOfSamples, downSampleRatio, downSampleRatioMode,

segmentIndex, see ps4000aGetValues().

* lpDataReady, the ps4000aStreamingReady() function that is called when the
data is ready.

pParameter, a void pointer that will be passed to the ps4000aStreamingReady()
callback function. The data type depends on the design of the callback function, which is
determined by the application programmer.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING – streaming only

PICO_NULL_PARAMETER

PICO_STARTINDEX_INVALID

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_BUFFERS_NOT_SET

PICO_INTERNAL_ERROR

PICO_MEMORY

API functions

53Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.23 ps4000aGetValuesBulk() – retrieve more than one
waveform at a time

PICO_STATUS ps4000aGetValuesBulk

(

int16_t handle,

uint32_t * noOfSamples,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

unit32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function allows more than one waveform to be retrieved at a time in rapid block mode. The waveforms must
have been collected sequentially and in the same run.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

API functions

54Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

* noOfSamples, on entry, the number of samples required; on exit, the actual number
retrieved. The number of samples retrieved will not be more than the number requested. The
data retrieved always starts with the first sample captured.

fromSegmentIndex, the first segment from which waveforms should be retrieved.

toSegmentIndex, the last segment from which waveforms should be retrieved.

downSampleRatio, downSampleRatioMode, see Downsampling.

* overflow, an array of at least as many integers as the number of waveforms to be

retrieved. Each segment index has a separate overflow element, with overflow[0]

containing the fromSegmentIndex and the last index the toSegmentIndex. Each

element in the array is a bit field as described under ps4000aGetValues().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_NO_CAPTURES_AVAILABLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_CAPTURING_DATA

PICO_INVALID_SAMPLERATIO

API functions

55Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.24 ps4000aGetValuesOverlapped() – retrieve data in
overlapping blocks

PICO_STATUS ps4000aGetValuesOverlapped

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in block mode. The request will be executed,

and the arguments validated, when you call ps4000aRunBlock(). The advantage of this function is that the

driver makes contact with the scope only once, when you call ps4000aRunBlock(), compared with the two

contacts that occur when you use the conventional ps4000aRunBlock(), ps4000aGetValues() calling
sequence. This slightly reduces the dead time between successive captures in block mode.

After calling ps4000aRunBlock(), you can optionally use ps4000aGetValues() to request further copies
of the data. This might be required if you wish to display the data with different data reduction settings.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Applicability Block mode

Arguments handle,

startIndex,

* noOfSamples,

downSampleRatio,

downSampleRatioMode,

segmentIndex: see ps4000aGetValues()

* overflow: see ps4000aGetValuesBulk()

Returns PICO_OK

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

API functions

56Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.24.1 Using the GetValuesOverlapped functions

This procedure is similar to that described in Using block mode, with differences shown in italics:

1. Open the oscilloscope using ps4000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps4000aSetChannel().

3. Using ps4000aGetTimebase(), select timebases until the required nanoseconds per sample is located.

4. Use the trigger setup functions ps4000aSetTriggerChannelDirections() and

ps4000aSetTriggerChannelProperties() to set up the trigger if required.

4a. Use ps4000aSetDataBuffer() to tell the driver where your memory buffer is.

4b. Set up the transfer of the block of data from the oscilloscope using ps4000aGetValuesOverlapped().

5. Start the oscilloscope running using ps4000aRunBlock().

6. Wait until the oscilloscope is ready using the ps4000aBlockReady() callback (or poll using

ps4000aIsReady()).
7. (not needed)
8. (not needed)
9. Display the data.
10. Repeat steps 5 to 9 if needed.

11. Stop the oscilloscope using ps4000aStop().
12. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

13. Close the device using ps4000aCloseUnit().

A similar procedure can be used with rapid block mode using ps4000aGetValuesOverlappedBulk().

API functions

57Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.25 ps4000aGetValuesOverlappedBulk() – retrieve
overlapping data from multiple segments

PICO_STATUS ps4000aGetValuesOverlappedBulk

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

int16_t * overflow

)

This function requests data from multiple segments in rapid block mode. It is similar to calling

ps4000aGetValuesOverlapped() multiple times, but more efficient.

Applicability Rapid block mode

Arguments handle,

startIndex,

* noOfSamples,

downSampleRatio,

downSampleRatioMode: see ps4000aGetValues()

fromSegmentIndex,

toSegmentIndex,

* overflow, see ps4000aGetValuesBulk()

Returns PICO_OK

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_NOT_RESPONDING

PICO_POWER_SUPPLY_UNDERVOLTAGE

API functions

58Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.26 ps4000aGetValuesTriggerTimeOffsetBulk() – get
trigger timing adjustments (multiple)

PICO_STATUS ps4000aGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

uint32_t * timesUpper,

uint32_t * timesLower,

PS4000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block mode or rapid block mode.

It is a more efficient alternative to calling ps4000aGetTriggerTimeOffset() once for each waveform

required. See ps4000aGetTriggerTimeOffset() for an explanation of trigger time offsets.

This function is provided for use in programming environments that do not support 64-bit integers. If your
programming environment does support 64-bit integers, it is easier to use

ps4000aGetValuesTriggerTimeOffsetBulk64().

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

* timesUpper, an array of integers. On exit, the most significant 32 bits of the time offset

for each requested segment index. times[0] will hold the fromSegmentIndex time

offset and the last times index will hold the toSegmentIndex time offset. The array must
be long enough to hold the number of requested times.

* timesLower, an array of integers. On exit, the least significant 32 bits of the time offset

for each requested segment index. times[0] will hold the fromSegmentIndex time

offset and the last times index will hold the toSegmentIndex time offset. The array size
must be long enough to hold the number of requested times.

* timeUnits, an array of integers. The array must be long enough to hold the number of

requested times. On exit, timeUnits[0] will contain the time unit for

fromSegmentIndex and the last element will contain the time unit for toSegmentIndex.

Refer to ps4000aGetTriggerTimeOffset() for specific figures.

fromSegmentIndex, the first segment for which the time offset is required.

toSegmentIndex, the last segment for which the time offset is required. If

toSegmentIndex is less than fromSegmentIndex then the driver will wrap around from
the last segment to the first.

API functions

59Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Returns PICO_OK

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_INVALID_HANDLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions

60Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.27 ps4000aGetValuesTriggerTimeOffsetBulk64() – get
trigger timing adjustments (multiple)

PICO_STATUS ps4000aGetValuesTriggerTimeOffsetBulk64

(

int16_t handle,

int64_t * times,

PS4000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function is equivalent to ps4000aGetValuesTriggerTimeOffsetBulk() but retrieves the trigger time
offsets as 64-bit values instead of pairs of 32-bit values.

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

* times, an array of integers. On exit, this will hold the time offset for each requested

segment index. times[0] will hold the time offset for fromSegmentIndex, and the last

times index will hold the time offset for toSegmentIndex. The array must be long enough
to hold the number of times requested.

* timeUnits, an array of integers long enough to hold the number of requested times.

timeUnits[0] will contain the time unit for fromSegmentIndex, and the last element

will contain the toSegmentIndex. Refer to ps4000aGetTriggerTimeOffset64() for
specific figures.

fromSegmentIndex, the first segment for which the time offset is required. The results for

this segment will be placed in times[0] and timeUnits[0].

toSegmentIndex, the last segment for which the time offset is required. The results for

this segment will be placed in the last elements of the times and timeUnits arrays. If

toSegmentIndex is less than fromSegmentIndex, then the driver will wrap around from
the last segment to the first.

Returns PICO_OK

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_INVALID_HANDLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions

61Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.28 ps4000aIsLedFlashing() – read status of LED
PICO_STATUS ps4000aIsLedFlashing

(

int16_t handle,

int16_t * status

)

This function reports whether or not the LED is flashing.

Applicability All modes

Arguments handle, identifier for the scope device.

status, returns a flag indicating the status of the LED:
<> 0 : flashing
0 : not flashing

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_NULL_PARAMETER

PICO_DRIVER_FUNCTION

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

PICO_NOT_USED

API functions

62Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.29 ps4000aIsReady() – poll the driver in block mode
PICO_STATUS ps4000aIsReady

(

int16_t handle,

int16_t * ready

)

This function may be used instead of a callback function to receive data from ps4000aRunBlock(). To use

this method, pass a NULL pointer as the lpReady argument to ps4000aRunBlock(). You must then poll the
driver to see if it has finished collecting the requested samples.

Applicability Block mode

Arguments handle, identifier for the scope device.

ready, on exit, indicates the state of the collection. If zero, the device is still collecting. If

non-zero, the device has finished collecting and ps4000aGetValues() can be used to
retrieve the data.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_CANCELLED

PICO_NOT_RESPONDING

API functions

63Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.30 ps4000aIsTriggerOrPulseWidthQualifierEnabled() –
find out whether trigger is enabled

PICO_STATUS ps4000aIsTriggerOrPulseWidthQualifierEnabled

(

int16_t handle,

int16_t * triggerEnabled,

int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability Call after setting up the trigger, and just before calling either ps4000aRunBlock() or

ps4000aRunStreaming().

Arguments handle, identifier for the scope device.

* triggerEnabled, on exit, indicates whether the trigger will successfully be set when

ps4000aRunBlock() or ps4000aRunStreaming() is called. A non-zero value indicates
that the trigger is set, otherwise the trigger is not set.

* pulseWidthQualifierEnabled, on exit, indicates whether the pulse width qualifier

will successfully be set when ps4000aRunBlock() or ps4000aRunStreaming() is
called. A non-zero value indicates that the pulse width qualifier is set, otherwise the pulse
width qualifier is not set.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_DRIVER_FUNCTION

API functions

64Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.31 ps4000aMaximumValue() – get maximum allowed
sample value

PICO_STATUS ps4000aMaximumValue

(

int16_t handle,

int16_t * value

)

This function returns the maximum possible sample value in the current operating mode.

Applicability All modes

Arguments handle, identifier for the scope device.

* value, on exit, the maximum value.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

API functions

65Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.32 ps4000aMemorySegments() – divide scope memory
into segments

PICO_STATUS ps4000aMemorySegments

(

int16_t handle,

uint32_t nSegments,

int32_t * nMaxSamples

)

This function sets the number of memory segments that the scope device will use.

By default, each capture fills the scope device's available memory. This function allows you to divide the memory
into a number of segments so that the scope can store several captures sequentially. The number of segments
defaults to 1 when the scope device is opened.

Applicability Block mode, rapid block mode

Arguments handle, identifier for the scope device.

nSegments, the number of segments to be used, from 1 to the number returned by

ps4000aGetMaxSegments().

* nMaxSamples, on exit, the number of samples that are available in each segment. This
is the total number over all channels, so if more than one channel is in use, the number of

samples available to each channel is nMaxSamples divided by 2 (for 2 channels) or 4 (for 3
or 4 channels) or 8 (for 5 to 8 channels).

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_DRIVER_FUNCTION

PICO_MEMORY_FAIL

API functions

66Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.33 ps4000aMinimumValue() – get minimum allowed
sample value

PICO_STATUS ps4000aMinimumValue

(

int16_t handle,

int16_t * value

)

This function returns the minimum possible sample value in the current operating mode.

Applicability All modes

Arguments handle, identifier for the scope device.

* value, on exit, the minimum value.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

API functions

67Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.34 ps4000aNoOfStreamingValues() – get number of
samples in streaming mode

PICO_STATUS ps4000aNoOfStreamingValues

(

int16_t handle,

uint32_t * noOfValues

)

This function returns the number of raw samples available after data collection in streaming mode. Call it after

ps4000aStop().

Applicability Streaming mode.

Arguments handle, identifier for the scope device.

* noOfValues, on exit, the number of samples.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_USED

PICO_BUSY

PICO_DRIVER_FUNCTION

API functions

68Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.35 ps4000aNearestSampleIntervalStateless() – find
nearest available sampling interval

PICO_STATUS ps4000aNearestSampleIntervalStateless

(

int16_t handle,

PS4000A_CHANNEL_FLAGS enabledChannelOrPortFlags,

double timeIntervalRequested,

PS4000A_DEVICE_RESOLUTION resolution,

uint16_t useEts,

uint32_t * timebase,

double * timeIntervalAvailable

)

This function queries the nearest available sampling interval given a desired sampling interval and a device
configuration. It does not change the configuration of the device.

Applicability

Arguments handle, identifier for the scope device.

enabledChannelOrPortFlags, the proposed combination of enabled channels. Use

the bitwise-OR of the relevant PS4000A_CHANNEL_FLAGS values – see

ps4000aGetMinimumTimebaseStateless().

timeIntervalRequested, the proposed sampling interval, in seconds.

resolution, the proposed resolution.

useEts, the proposed state of ETS:

0 = ETS off

1 = ETS on

* timebase, on exit, the timebase that will result in a sampling interval as close as

possible to timeIntervalRequested.

* timeIntervalAvailable, on exit, the sampling interval corresponding to

timebase.

Returns See PicoStatus.h.

API functions

69Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.36 ps4000aOpenUnit() – open a scope device
PICO_STATUS ps4000aOpenUnit

(

int16_t * handle,

int8_t * serial

)

This function opens a scope device. The maximum number of units that can be opened is determined by the
operating system, the kernel driver and the PC's hardware.

PicoScope 4824 and 4000A Series only: If the function returns PICO_USB3_0_DEVICE_NON_USB3_0_PORT,

the application must call ps4000aChangePowerSource() to complete the two-stage power-up sequence for

a USB 2.0 port (or USB 3.0 port with USB 2.0 cable). Returns PICO_OK if connected to a USB 3.0 port.

PicoScope 4444 only: If the function returns PICO_POWER_SUPPLY_NOT_CONNECTED, the application must

call ps4000aChangePowerSource() to complete the two-stage power-up sequence for a USB 2.0 or USB 3.0

port. Returns PICO_POWER_SUPPLY_CONNECTED if a power supply is connected.

PicoScope 4444 only: This function opens the device with the lowest available resolution. To open the device with

a different resolution, use ps4000aOpenUnitWithResolution().

Applicability All devices

Arguments handle, on exit, an identifier for the device:
–1 : if the unit fails to open,
0 : if no unit is found or
> 0 : if successful (value is handle of the device opened)

handle must be used in all subsequent calls to API functions to identify this scope device.

* serial, on entry, an empty string, a serial number string or NULL; on exit, a null-

terminated string containing the device's serial number. If serial is NULL, the function
opens the first scope found; otherwise, it tries to open the scope that matches the string.

Returns PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_RESOURCE_ERROR

PICO_MEMORY_FAIL

PICO_HARDWARE_VERSION_NOT_SUPPORTED

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED

PICO_FPGA_FAIL

API functions

70Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.37 ps4000aOpenUnitAsync() – open a scope device
without waiting

PICO_STATUS ps4000aOpenUnitAsync

(

int16_t * status,

int8_t * serial

)

This function opens a scope device without blocking the calling thread. You can find out when it has finished by

periodically calling ps4000aOpenUnitProgress() until that function returns a non-zero value.

Applicability All devices

Arguments * status, on exit, indicates:
0 if there is already an open operation in progress
1 if the open operation is initiated

* serial, on exit, a null-terminated string containing the device's serial number.

Returns PICO_OK

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_OPERATION_FAILED

PICO_OS_NOT_SUPPORTED

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_RESOURCE_ERROR

PICO_MEMORY_FAIL

PICO_HARDWARE_VERSION_NOT_SUPPORTED

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED

PICO_FPGA_FAIL

API functions

71Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.38 ps4000aOpenUnitAsyncWithResolution() – open a
flexible-resolution scope

PICO_STATUS ps4000aOpenUnitAsyncWithResolution

(

int16_t * status,

int8_t * serial,

PS4000A_DEVICE_RESOLUTION resolution

)

This function is similar to ps4000aOpenUnitAsync() but also sets the ADC resolution for scope devices that
have flexible resolution.

Applicability All devices

Arguments * status,

* serial, see ps4000aOpenUnitAsync().

resolution, see ps4000aOpenUnitWithResolution(). If the device has fixed ADC
resolution, this argument is ignored.

Returns PICO_OK

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_OPERATION_FAILED

PICO_OS_NOT_SUPPORTED

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_RESOURCE_ERROR

PICO_MEMORY_FAIL

PICO_HARDWARE_VERSION_NOT_SUPPORTED

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED

PICO_FPGA_FAIL

API functions

72Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.39 ps4000aOpenUnitProgress() – check progress of
OpenUnit() call

PICO_STATUS ps4000aOpenUnitProgress

(

int16_t * handle,

int16_t * progressPercent,

int16_t * complete

)

This function checks on the progress of ps4000aOpenUnitAsync(). For status codes related to USB 2.0

powering, see ps4000aOpenUnit().

PicoScope 4444: returns PICO_POWER_SUPPLY_NOT_CONNECTED on completion if no power supply is

connected; returns PICO_OK if a power supply is connected.

PicoScope 4824 and 4000A Series: returns PICO_USB3_0_DEVICE_NON_USB3_0_PORT if connected to a

USB 2.0 port, or to any type of port through a USB 2.0 cable. Returns PICO_OK if connected to a USB 3.0 port.

Applicability Use after ps4000aOpenUnitAsync()

Arguments * handle, on exit, the device identifier. –1 if the unit fails to open, 0 if no unit is found or a

non-zero handle to the device. This handle is valid only if the function returns PICO_OK.

* progressPercent, on exit, the percentage progress. 100% implies that the open
operation is complete.

* complete, on exit, set to 1 when the open operation has finished

Returns PICO_OK

PICO_NULL_PARAMETER

PICO_OPERATION_FAILED

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_OS_NOT_SUPPORTED

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_RESOURCE_ERROR

PICO_MEMORY_FAIL

PICO_HARDWARE_VERSION_NOT_SUPPORTED

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED

PICO_FPGA_FAIL

API functions

73Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.40 ps4000aOpenUnitWithResolution() – open a
flexible-resolution scope

PICO_STATUS ps4000aOpenUnitWithResolution

(

int16_t * handle,

int8_t * serial,

PS4000A_DEVICE_RESOLUTION resolution

)

This function is similar to ps4000aOpenUnit() but additionally sets the hardware ADC resolution of a flexible-
resolution device.

Applicability All devices

Arguments handle, see ps4000aOpenUnit()

* serial, see ps4000aOpenUnit()

resolution, an enumerated value of type PS4000A_DEVICE_RESOLUTION indicating
the number of bits of ADC resolution required from the scope device. If the device has fixed
ADC resolution, this argument is ignored.

Returns PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_RESOURCE_ERROR

PICO_MEMORY_FAIL

PICO_HARDWARE_VERSION_NOT_SUPPORTED

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED

PICO_FPGA_FAIL

API functions

74Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.41 ps4000aPingUnit() – check that unit is responding
PICO_STATUS ps4000aPingUnit

(

int16_t handle

)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability All modes

Arguments handle, identifier for the scope device.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_BUSY

PICO_NOT_RESPONDING

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

API functions

75Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.42 ps4000aQueryOutputEdgeDetect() – query special
trigger mode

PICO_STATUS ps4000aQueryOutputEdgeDetect

(

int16_t handle,

int16_t * state

)

This function obtains the state of the edge-detect flag, which is described in

ps4000aSetOutputEdgeDetect().

Applicability Level and window trigger types

Arguments handle, identifier for the scope device.

state, on exit, the value of the edge-detect flag:

 0 : do not wait for a signal transition

<> 0 : wait for a signal transition (default)

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

API functions

76Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.43 ps4000aRunBlock() – start block mode
PICO_STATUS ps4000aRunBlock

(

int16_t handle,

int32_t noOfPreTriggerSamples,

int32_t noOfPostTriggerSamples,

uint32_t timebase,

int32_t * timeIndisposedMs,

uint32_t segmentIndex,

ps4000aBlockReady lpReady,

void * pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using block
mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples (see
below for details). The total number of samples must not be more than the memory depth of the segment

referred to by segmentIndex.

Applicability Block mode and rapid block mode

Arguments handle, identifier for the scope device.

noOfPreTriggerSamples, the number of samples to return before the trigger event. If no

trigger has been set, then this argument is added to noOfPostTriggerSamples to give
the maximum number of data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to return after the trigger event. If no

trigger event has been set, then this argument is added to noOfPreTriggerSamples to
give the maximum number of data points to collect. If a trigger condition has been set, this
specifies the number of data points to collect after a trigger has fired, and the number of
data points to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 232–1. See the guide to calculating timebase values.

* timeIndisposedMs, on exit, the time, in milliseconds, that the scope will spend
collecting samples. This does not include any auto trigger timeout. If this pointer is null,
nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to use.

lpReady, a pointer to the ps4000aBlockReady() callback that the driver will call when

the data has been collected. To use the ps4000aIsReady() polling method instead of a
callback function, set this pointer to NULL.

* pParameter, a void pointer that is passed to the ps4000aBlockReady() callback
function. The callback can use the pointer to return arbitrary data to your application.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_SEGMENT_OUT_OF_RANGE

API functions

77Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

PICO_INVALID_CHANNEL

PICO_INVALID_TRIGGER_CHANNEL

PICO_INVALID_CONDITION_CHANNEL

PICO_TOO_MANY_SAMPLES

PICO_INVALID_TIMEBASE

PICO_NOT_RESPONDING

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_TRIGGER_WITHIN_PRE_NOT_ALLOWED_WITH_DELAY

PICO_INVALID_NUMBER_CHANNELS_FOR_RESOLUTION

PICO_NOT_ENOUGH_SEGMENTS

PICO_NO_TRIGGER_ENABLED_FOR_TRIGGER_IN_PRE_TRIG

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC

API functions

78Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.44 ps4000aRunStreaming() – start streaming mode
PICO_STATUS ps4000aRunStreaming

(

int16_t handle,

uint32_t * sampleInterval,

PS4000A_TIME_UNITS sampleIntervalTimeUnits,

uint32_t maxPreTriggerSamples,

uint32_t maxPostTriggerSamples,

int16_t autoStop,

uint32_t downSampleRatio,

PS4000A_RATIO_MODE downSampleRatioMode,

uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When data has been collected
from the device it is downsampled and the values returned to the application. Call

ps4000aGetStreamingLatestValues() to retrieve the data. See Using streaming mode for a step-by-step
guide to this process.

This function always starts collecting data immediately, regardless of the trigger settings. Whether a trigger is set

or not, the total number of samples stored in the driver is always maxPreTriggerSamples +

maxPostTriggerSamples. If autoStop is false, the scope will collect data continuously, using the buffer as
a first-in first-out (FIFO) memory.

Applicability Streaming mode only

Arguments handle, identifier for the scope device.

* sampleInterval, on entry, the requested time interval between data points on entry; on
exit, the actual time interval assigned.

sampleIntervalTimeUnits, the unit of time that the sampleInterval is set to. See

ps4000aGetTriggerTimeOffset() for values.

maxPreTriggerSamples, the maximum number of raw samples before a trigger event
for each enabled channel.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for
each enabled channel.

autoStop, a flag to specify if the streaming should stop when all of

maxPreTriggerSamples + maxPostTriggerSamples have been taken.

downSampleRatio, the number of raw values to each downsampled value.

downSampleRatioMode, the type of data reduction to use.

overviewBufferSize, the size of the overview buffers (the buffers passed by the

application to the driver). The size must be less than or equal to the bufferLth value

passed to ps4000aSetDataBuffer().

API functions

79Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_STREAMING_FAILED

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_INVALID_SAMPLE_INTERVAL

PICO_INVALID_BUFFER

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_TIMEOUT PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_INVALID_NUMBER_CHANNELS_FOR_RESOLUTION

PICO_INTERNAL_ERROR

PICO_MEMORY

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC

API functions

80Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.45 ps4000aSetBandwidthFilter() – enable the
bandwidth limiter

PICO_STATUS ps4000aSetBandwidthFilter

(

int16_t handle,

PS4000A_CHANNEL channel,

PS4000A_BANDWIDTH_LIMITER bandwidth

)

This function sets up the bandwidth limiter filter, if one is available on the selected device.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

channel, an enumerated type in the following range:

PS4000A_CHANNEL_A … PS4000A_CHANNEL_D

bandwidth, the required cutoff frequency of the filter. See ps4000aApi.h for allowable
values.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_NOT_USED (if the device does not have a bandwidth limiter)

PICO_BUSY

PICO_ARGUMENT_OUT_OF_RANGE

PICO_INVALID_BANDWIDTH

API functions

81Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.46 ps4000aSetCalibrationPins() – set up the CAL
output pins

PICO_STATUS ps4000aSetCalibrationPins

(

int16_t handle,

PS4000A_PIN_STATES pinStates,

PS4000A_WAVE_TYPE waveType,

double frequency,

uint32_t amplitude,

uint32_t offset

)

This function sets up the CAL pins on the back of the PicoScope 4444 differential oscilloscope. These pins can
generate test signals for use when compensating scope probes.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

pinStates, the desired state of the CAL pins:

PS4000A_CAL_PINS_OFF (0) 0 volts on both pins

PS4000A_GND_SIGNAL (1) 0 volts on CAL – pin,
test signal on CAL + pin

PS4000A_SIGNAL_SIGNAL (2) same test signal on both pins

waveType, as defined in ps4000aApi.h. Only the following types are allowed:

PS4000A_SINE

PS4000A_SQUARE

PS4000A_DC_VOLTAGE

frequency, the signal repetition frequency in hertz. Range [100, 10 000] for

PS4000A_SQUARE, [100, 100 000] for PS4000A_SINE. Value ignored for

PS4000A_DC_VOLTAGE.

amplitude, the signal amplitude in microvolts. Range [0, 8 000 000]. Value ignored for

PS4000A_DC_VOLTAGE.

offset, the signal offset in microvolts. Range [–4 000 000, +4 000 000]. If offset is

zero, the signal range is [0 V, amplitude]. If the total of offset ± amplitude exceeds
the range [–4 000 000, +4 000 000], the output will be clipped.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

PICO_CAL_PINS_WAVETYPE

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

82Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.47 ps4000aSetChannel() – set up input channels
PICO_STATUS ps4000aSetChannel

(

int16_t handle,

PS4000A_CHANNEL channel,

int16_t enabled,

PS4000A_COUPLING type,

PICO_CONNECT_PROBE_RANGE range,

float analogOffset

)

This function sets up the characteristics of the specified input channel.

Applicability All modes

Arguments handle, identifier for the scope device.

channel, the channel to be configured. The allowable values are:

PS4000A_CHANNEL_A … PS4000A_CHANNEL_B (PicoScope 4224A)

PS4000A_CHANNEL_A … PS4000A_CHANNEL_D (PicoScope 4424A and 4444)

PS4000A_CHANNEL_A … PS4000A_CHANNEL_H (PicoScope 4824A and 4824)

enabled, specifies if the channel is active (TRUE) or inactive (FALSE).

type, specifies the coupling mode: DC (TRUE) or AC (FALSE).

range, specifies the measuring range. This is defined differently depending on the
oscilloscope.

PicoScope 4444: the measuring ranges are defined in PicoConnectProbes.h. Refer

to the PICO_CONNECT_PROBE_RANGE enumeration

(ps4000aProbeInteractions()) for the list, which is specific to each probe.

PicoScope 4824: Measuring ranges 0 to 13, defined ps4000aApi.h, are shown in the
table below.

analogOffset, an offset, in volts, to be added to the input signal before it reaches the
input amplifier and digitizer. See the device data sheet for the allowable range.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_INVALID_VOLTAGE_RANGE

PICO_DRIVER_FUNCTION

PICO_INVALID_COUPLING

PICO_INVALID_ANALOGUE_OFFSET

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC
Indicates that the channel configuration is not applicable to the PicoConnect probe in
use. Check the most recent probe notification (received via callback) and apply a range
appropriate to your probe.

PICO_PROBE_NOT_POWERED_WITH_DC_POWER_SUPPLY

PICO_PROBE_POWER_DC_POWER_SUPPLY_REQUIRED

API functions

83Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

range Voltage range

0 PICO_X1_PROBE_10MV ±10 mV

1 PICO_X1_PROBE_20MV ±20 mV

2 PICO_X1_PROBE_50MV ±50 mV

3 PICO_X1_PROBE_100MV ±100 mV

4 PICO_X1_PROBE_200MV ±200 mV

5 PICO_X1_PROBE_500MV ±500 mV

6 PICO_X1_PROBE_1V ±1 V

7 PICO_X1_PROBE_2V ±2 V

8 PICO_X1_PROBE_5V ±5 V

9 PICO_X1_PROBE_10V ±10 V

10 PICO_X1_PROBE_20V ±20 V

11 PICO_X1_PROBE_50V ±50 V

12 PICO_X1_PROBE_100V ±100 V

13 PICO_X1_PROBE_200V ±200 V

API functions

84Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.48 ps4000aSetDataBuffer() – register data buffer with
driver

PICO_STATUS ps4000aSetDataBuffer

(

int16_t handle,

PS4000A_CHANNEL channel,

int16_t * buffer,

int32_t bufferLth,

uint32_t segmentIndex,

PS4000A_RATIO_MODE mode

)

This function registers your data buffer, for non-aggregated data, with the ps4000a driver. You need to allocate
the buffer before calling this function.

Applicability All sampling modes.

Non-aggregated data only. For aggregated data, use ps4000aSetDataBuffers().

Arguments handle, identifier for the scope device.

channel, the channel for which you want to set the buffers. See ps4000aSetChannel()
for allowable values.

* buffer, a buffer to receive the data values. Each value is a 16-bit ADC count scaled
according to the selected voltage range.

bufferLth, the size of the buffer array.

segmentIndex, the number of the memory segment to be retrieved.

mode, the type of data reduction to use. See Downsampling for options.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_DRIVER_FUNCTION

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_INVALID_PARAMETER

API functions

85Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.49 ps4000aSetDataBuffers() – register min/max data
buffers with driver

PICO_STATUS ps4000aSetDataBuffers

(

int16_t handle,

PS4000A_CHANNEL channel,

int16_t * bufferMax,

int16_t * bufferMin,

int32_t bufferLth,

uint32_t segmentIndex,

PS4000A_RATIO_MODE mode

)

This function registers your data buffers, for receiving aggregated data, with the ps4000a driver. You need to
allocate memory for the buffers before calling this function.

Applicability All sampling modes.
All downsampling modes. For non-aggregated data, the simpler

ps4000aSetDataBuffer() can be used instead.

Arguments handle, identifier for the scope device.

channel, the channel for which you want to set the buffers. See ps4000aSetChannel()
for allowable values.

* bufferMax, a user-allocated buffer to receive the maximum data values in aggregation
mode, or the non-aggregated values otherwise. Each value is a 16-bit ADC count scaled
according to the selected voltage range.

* bufferMin, a user-allocated buffer to receive the minimum data values in aggregation
mode. Not normally used in other modes, but you can direct the driver to write non-aggregated

values to this buffer by setting bufferMax to NULL. To enable aggregation, the
downsampling ratio and mode must be set appropriately when calling one of the

ps4000aGetValues...() functions.

bufferLth, specifies the size of the bufferMax and bufferMin arrays.

segmentIndex, the number of the memory segment to be retrieved.

mode, the type of downsampling to use. See Downsampling.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_DRIVER_FUNCTION

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_INVALID_PARAMETER

API functions

86Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.50 ps4000aSetDeviceResolution() – set up a FlexRes
scope

PICO_STATUS ps4000aSetDeviceResolution

(

int16_t handle,

PS4000A_DEVICE_RESOLUTION resolution

)

This function sets the ADC resolution. Increasing the resolution affects other properties such as the maximum
sampling rate and analog bandwidth. When the resolution is changed, any data captured that has not been saved

will be lost. If ps4000aSetChannel() is not called, ps4000aRunBlock() and ps4000aRunStreaming()
may fail.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

resolution, determines the resolution of the device when opened. This is chosen from

the available values of PS4000A_DEVICE_RESOLUTION. If resolution is out of range the

device will return PICO_INVALID_DEVICE_RESOLUTION.

Returns PICO_OK

PICO_INVALID_DEVICE_RESOLUTION

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FPGA_FAIL

PICO_MEMORY_CLOCK_FREQUENCY

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND (if the specified unit was not found)

PICO_NOT_RESPONDING

PICO_MEMORY_FAIL

PICO_ANALOG_BOARD

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_CONNECTED

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

API functions

87Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.51 ps4000aSetEts() – set up equivalent-time sampling
(ETS)

PICO_STATUS ps4000aSetEts

(

int16_t handle,

PS4000A_ETS_MODE mode,

int16_t etsCycles,

int16_t etsInterleave,

int32_t * sampleTimePicoseconds

)

This function is reserved for future use.

Applicability Not implemented

Arguments handle, identifier for the scope device.

Returns PICO_ETS_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

API functions

88Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.52 ps4000aSetEtsTimeBuffer() – set up 64-bit buffer for
ETS time data

PICO_STATUS ps4000aSetEtsTimeBuffer

(

int16_t handle,

int64_t * buffer,

int32_t bufferLth

)

Reserved for future use.

Applicability Not implemented

Arguments handle, identifier for the scope device.

Returns PICO_ETS_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

API functions

89Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.53 ps4000aSetEtsTimeBuffers() – set up 32-bit buffers
for ETS time data

PICO_STATUS ps4000aSetEtsTimeBuffers

(

int16_t handle,

uint32_t * timeUpper,

uint32_t * timeLower,

int32_t bufferLth

)

This function is reserved for future use.

Applicability Not implemented

Arguments handle, identifier for the scope device.

Returns PICO_ETS_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

API functions

90Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.54 ps4000aSetNoOfCaptures() – set number of rapid
block captures

PICO_STATUS ps4000aSetNoOfCaptures

(

int16_t handle,

uint32_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not call this
function before a run, the driver will capture one waveform.

Applicability Rapid block mode

Arguments handle, identifier for the scope device.

nCaptures, the number of waveforms to be captured in one run.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

API functions

91Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.55 ps4000aSetOutputEdgeDetect() – set special trigger
mode

PICO_STATUS ps4000aSetOutputEdgeDetect

(

int16_t handle,

int16_t state

)

This function tells the device whether or not to wait for an edge on the trigger input when one of the 'level' or
'window' trigger types is in use. By default the device waits for an edge on the trigger input before firing the trigger.
If you switch off edge detect mode, the device will trigger continually for as long as the trigger input remains in
the specified state.

You can query the state of this flag by calling ps4000aQueryOutputEdgeDetect().

Applicability Level and window trigger types

Arguments handle, identifier for the scope device.

state, a flag that specifies the trigger behavior:

 0 : do not wait for a signal transition

<> 0 : wait for a signal transition (default)

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

API functions

92Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.56 ps4000aSetProbeInteractionCallback() – register
callback function for PicoConnect events

PICO_STATUS ps4000aSetProbeInteractionCallback

(

int16_t handle,

ps4000aProbeInteractions callback

)

This function registers your ps4000aProbeInteractions() callback function with the ps4000a driver. The
driver will then call your function whenever a PicoConnect™ probe is plugged into, or unplugged from, a PicoScope
4444 device, or if the power consumption of the connected probes exceeds the power available. See Handling
PicoConnect probe interactions for more information on this process.

You should call this function as soon as the device has been successfully opened and before any call to

ps4000aSetChannel().

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

callback, a pointer to your callback function.

Returns PICO_OK

API functions

93Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.57 ps4000aSetPulseWidthQualifierConditions() – set
up pulse width triggering

PICO_STATUS ps4000aSetPulseWidthQualifierConditions

(

int16_t handle,

PS4000A_CONDITION * conditions,

int16_t nConditions,

PS4000A_CONDITIONS_INFO info

)

This function sets up the conditions for pulse width qualification, which is used with either threshold triggering,
level triggering or window triggering to produce time-qualified triggers. Each call to this function creates a pulse

width qualifier equal to the logical AND of the elements of the conditions array. Calling this function multiple
times creates the logical OR of multiple AND operations. This AND-OR logic allows you to create any possible
Boolean function of the scope's inputs.

To cease ORing pulse width qualifier conditions and start again with a new set, call with

info = PS4000A_CLEAR.

Other settings of the pulse width qualifier are configured by calling

ps4000aSetPulseWidthQualifierProperties().

Note: The oscilloscope contains a single pulse-width counter. It is possible to include multiple channels in a
pulse-width qualifier but the same pulse-width counter will apply to all of them. The counter starts when your
selected trigger condition occurs, and the scope then triggers if the trigger condition ends after a time that
satisfies the pulse-width condition.

Applicability All modes

Arguments handle, identifier for the scope device.

* conditions: see ps4000aSetTriggerChannelConditions()

nConditions: see ps4000aSetTriggerChannelConditions()

info: see ps4000aSetTriggerChannelConditions()

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_PULSE_WIDTH_QUALIFIER

PICO_DRIVER_FUNCTION

PICO_INVALID_CONDITION_INFO

PICO_INVALID_PARAMETER

PICO_DUPLICATE_CONDITION_SOURCE

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_TOO_MANY_CHANNELS_IN_USE

API functions

94Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.58 ps4000aSetPulseWidthQualifierProperties() – set up
pulse width triggering

PICO_STATUS ps4000aSetPulseWidthQualifierProperties

(

int16_t handle,

PS4000A_THRESHOLD_DIRECTION direction,

uint32_t lower,

uint32_t upper,

PS4000A_PULSE_WIDTH_TYPE type

)

This function configures the general properties of the pulse width qualifier.

Applicability All modes

Arguments handle, identifier for the scope device.

direction, the direction of the signal required for the trigger to fire. See

PS4000A_DIRECTION for allowable values. This is also the direction that resets and starts
the counter.

lower, the lower limit of the pulse width counter, in samples.

upper, the upper limit of the pulse width counter, in samples. This parameter is used only

when the type is set to PW_TYPE_IN_RANGE or PW_TYPE_OUT_OF_RANGE.

type, the pulse width type, one of these constants:

PW_TYPE_NONE (do not use the pulse width qualifier)

PW_TYPE_LESS_THAN (pulse width less than lower)

PW_TYPE_GREATER_THAN (pulse width greater than lower)

PW_TYPE_IN_RANGE (pulse width between lower and upper)

PW_TYPE_OUT_OF_RANGE (pulse width not between lower and upper)

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_PULSE_WIDTH_QUALIFIER

PICO_DRIVER_FUNCTION

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

API functions

95Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.59 ps4000aSetSigGenArbitrary() – set up arbitrary
waveform generator

PICO_STATUS ps4000aSetSigGenArbitrary

(

int16_t handle,

int32_t offsetVoltage, // see note 1

uint32_t pkToPk, // see note 1

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

int16_t * arbitraryWaveform, // see note 1

int32_t arbitraryWaveformSize, // see note 1

PS4000A_SWEEP_TYPE sweepType,

PS4000A_EXTRA_OPERATIONS operation, // see note 1

PS4000A_INDEX_MODE indexMode,

uint32_t shots,

uint32_t sweeps,

PS4000A_SIGGEN_TRIG_TYPE triggerType,

PS4000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator (AWG) uses direct digital synthesis (DDS). It maintains a 32-bit phase
accumulator that indicates the present location in the waveform. The top bits of the phase accumulator are used
as an index into a buffer containing the arbitrary waveform. The remaining bits act as the fractional part of the
index, enabling high-resolution control of output frequency and allowing the generation of lower frequencies.

Note 1: in general, this function can be called with new arguments while waiting for a trigger; the exceptions are
the arguments noted above, which must be unchanged on subsequent calls, otherwise the function will return

PICO_BUSY.

Note 2: call this function before starting data acquisition, even if the signal generator will be triggered during data
collection.

Note 3: for more information about using this function, read the article Triggering a PicoScope signal generator
using the PicoScope API functions.

Applicability All modes. PicoScope 4824 and 4000A Series only.

Arguments

handle, identifier for the scope device.

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

startDeltaPhase, the initial value added to the phase counter as the generator begins to step through the

waveform buffer. Call ps4000aSigGenFrequencyToPhase() to calculate this.

https://www.picotech.com/download/manuals/TriggeringAPicoScopeSignalGeneratorUsingThePicoScopeAPIFunctions.pdf
https://www.picotech.com/download/manuals/TriggeringAPicoScopeSignalGeneratorUsingThePicoScopeAPIFunctions.pdf

API functions

96Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

stopDeltaPhase, the final value added to the phase counter before the generator restarts or reverses the

sweep. If required, call ps4000aSigGenFrequencyToPhase() to calculate it. When frequency sweeping is

not required, set equal to startDeltaPhase.

deltaPhaseIncrement, the amount added to the delta phase value every time the dwellCount period
expires. This determines the amount by which the generator sweeps the output frequency in each dwell period.
When frequency sweeping is not required, set to zero.

dwellCount, the time, in multiples of dacPeriod, between successive additions of

deltaPhaseIncrement to the delta phase counter. This determines the rate at which the generator sweeps
the output frequency. Minimum allowable values are as follows:

PicoScope 4824: MIN_DWELL_COUNT

* arbitraryWaveform, a buffer that holds the waveform pattern as a set of samples equally spaced in

time. Call ps4000aSigGenArbitraryMinMaxValues() to obtain the range of allowable values, or use
these constants:

PicoScope 4824: [–32768, 32767]

arbitraryWaveformSize, the size of the arbitrary waveform buffer, in samples. Call

ps4000aSigGenArbitraryMinMaxValues() to obtain the range of allowable values, or use these
constants:

PicoScope 4824: PS4000A_MIN_SIG_GEN_BUFFER_SIZE (10)

PS4000A_MAX_SIG_GEN_BUFFER_SIZE (16384)

sweepType, determines whether the startDeltaPhase is swept up to the stopDeltaPhase, or down to

it, or repeatedly up and down. Use one of the following values: UP, DOWN, UPDOWN, DOWNUP.

operation, configures the white noise/PRBS (pseudo-random binary sequence) generator:

PS4000A_ES_OFF: White noise/PRBS output disabled. The waveform is defined by the other
arguments.

PS4000A_WHITENOISE: The signal generator produces white noise and ignores all settings except

offsetVoltage and pkTopk.

PS4000A_PRBS: The signal generator produces a PRBS.

indexMode, specifies how the signal will be formed from the arbitrary waveform data. SINGLE, DUAL and

QUAD index modes are possible (see AWG index modes).

shots, the number of cycles of the waveform to be produced after a trigger event. If this is set to a non-zero

value [1, MAX_SWEEPS_SHOTS], then sweeps must be set to zero.

sweeps, the number of times to sweep the frequency after a trigger event, according to sweepType. If this is

set to a non-zero value [1, MAX_SWEEPS_SHOTS], then shots must be set to zero.

triggerType, the type of trigger that will be applied to the signal generator:

PS4000A_SIGGEN_RISING: rising edge

PS4000A_SIGGEN_FALLING: falling edge

PS4000A_SIGGEN_GATE_HIGH: high level

PS4000A_SIGGEN_GATE_LOW: low level

triggerSource, the source that will trigger the signal generator:

PS4000A_SIGGEN_NONE: no trigger (free-running)

PS4000A_SIGGEN_SCOPE_TRIG: the selected oscilloscope channel (see

ps4000aSetSimpleTrigger())

PS4000A_SIGGEN_SOFT_TRIG: a software trigger (see ps4000aSigGenSoftwareControl())

API functions

97Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

If a trigger source other than PS4000A_SIGGEN_NONE is specified, then either shots or sweeps, but not
both, must be set to a non-zero value.

extInThreshold, not used

Returns PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NO_SIGNAL_GENERATOR

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_SIG_GEN_PARAM

PICO_NULL_PARAMETER

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_SHOTS_SWEEPS_WARNING

PICO_BUSY

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

98Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.59.1 AWG index modes

The arbitrary waveform generator supports SINGLE, DUAL and QUAD index modes to make the best use of the
waveform buffer.

SINGLE mode. The generator outputs the raw contents
of the buffer repeatedly. This mode is the only one that
can generate asymmetrical waveforms. You can also
use this mode for symmetrical waveforms, but the dual
and quad modes make more efficient use of the buffer
memory.

DUAL mode. The generator outputs the contents of the
buffer from beginning to end, and then does a second
pass in the reverse direction through the buffer. This
allows you to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian function,
and let the generator fill in the other half.

QUAD mode. The generator outputs the contents of the
buffer, then on its second pass through the buffer
outputs the same data in reverse order as in dual mode.
On the third and fourth passes it does the same but
with a negative version of the data. This allows you to
specify only the first quarter of a waveform with
fourfold symmetry, such as a sine wave, and let the
generator fill in the other three quarters.

4.59.2 Calculating deltaPhase

The arbitrary waveform generator steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (1/dacFrequency). If deltaPhase is constant,
the generator produces a waveform at a constant frequency that can be calculated as follows:

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = calculated from startDeltaPhase and deltaPhaseIncrement
phaseAccumulatorSize = maximum count of phase accumulator (see table below)
awgBufferSize = maximum AWG buffer size (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

You can call ps4000aSigGenFrequencyToPhase() to calculate deltaPhase.

API functions

99Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

It is also possible to sweep the frequency by continually modifying the deltaPhase. This is done by setting up a
deltaPhaseIncrement that the oscilloscope adds to the deltaPhase at specified intervals.

Parameter PicoScope 4824 and 4000A Series

dacFrequency 80 MHz

dacPeriod (= 1/dacFrequency) 12.5 ns

phaseAccumulatorSize 4 294 967 296 (232)

awgBufferSize 16 384 (214)

API functions

100Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.60 ps4000aSetSigGenBuiltIn() – set up function
generator

PICO_STATUS ps4000aSetSigGenBuiltIn

(

int16_t handle,

int32_t offsetVoltage, // see note 1

uint32_t pkToPk, // see note 1

PS4000A_WAVE_TYPE waveType, // see note 1

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS4000A_SWEEP_TYPE sweepType,

PS4000A_EXTRA_OPERATIONS operation, // see note 1

uint32_t shots,

uint32_t sweeps,

PS4000A_SIGGEN_TRIG_TYPE triggerType,

PS4000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in waveforms. If different start
and stop frequencies are specified, the oscilloscope will sweep either up, down or up and down.

Note 1: in general, this function can be called with new arguments while waiting for a trigger; the exceptions are

the arguments offsetVoltage, pkToPk, arbitraryWaveform, arbitraryWaveformSize and

operation, which must be unchanged on subsequent calls, otherwise the function will return a PICO_BUSY
status code.

Note 2: call this function before starting data acquisition, even if the signal generator will be triggered during data
collection.

Note 3: for more information about using this function, read the article Triggering a PicoScope signal generator
using the PicoScope API functions.

Applicability All modes. PicoScope 4824 and 4000A Series only.

Arguments handle, identifier for the scope device.

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

https://www.picotech.com/download/manuals/TriggeringAPicoScopeSignalGeneratorUsingThePicoScopeAPIFunctions.pdf
https://www.picotech.com/download/manuals/TriggeringAPicoScopeSignalGeneratorUsingThePicoScopeAPIFunctions.pdf

API functions

101Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

waveType, the type of waveform to be generated by the oscilloscope:

PS4000A_SINE sine wave

PS4000A_SQUARE square wave

PS4000A_TRIANGLE triangle wave

PS4000A_RAMP_UP rising sawtooth

PS4000A_RAMP_DOWN falling sawtooth

PS4000A_SINC sin(x)/x

PS4000A_GAUSSIAN normal distribution

PS4000A_HALF_SINE full-wave rectified sinusoid

PS4000A_DC_VOLTAGE DC voltage

PS4000A_WHITE_NOISE random values

startFrequency, the frequency in hertz at which the signal generator should begin.

Range: MIN_SIG_GEN_FREQ to MAX_SIG_GEN_FREQ.

stopFrequency, the frequency in hertz at which the sweep should reverse direction or

return to the start frequency. Range: MIN_SIG_GEN_FREQ to MAX_SIG_GEN_FREQ.

increment, the amount in hertz by which the frequency rises or falls every dwellTime
seconds in sweep mode.

dwellTime, the time in seconds between frequency changes in sweep mode.

sweepType,

operation,

shots,

sweeps,

triggerType,

triggerSource,

extInThreshold: see ps4000aSetSigGenArbitrary()

Returns PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NO_SIGNAL_GENERATOR

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_SIG_GEN_PARAM

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_SHOTS_SWEEPS_WARNING

PICO_BUSY

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

102Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.61 ps4000aSetSigGenPropertiesArbitrary() – set up
arbitrary waveform generator

PICO_STATUS ps4000aSetSigGenPropertiesArbitrary

(

int16_t handle,

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

PS4000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS4000A_SIGGEN_TRIG_TYPE triggerType,

PS4000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the arbitrary waveform generator. All values can be reprogrammed while the
oscilloscope is waiting for a trigger.

Applicability All modes. PicoScope 4824 and 4000A Series only.

Arguments See ps4000SetSigGenArbitrary()

Returns PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

API functions

103Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.62 ps4000aSetSigGenPropertiesBuiltIn() – set up
function generator

PICO_STATUS ps4000aSetSigGenPropertiesBuiltIn

(

int16_t handle,

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS4000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS4000A_SIGGEN_TRIG_TYPE triggerType,

PS4000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the signal generator. Values can be changed while the oscilloscope is waiting for a
trigger.

Applicability All modes. PicoScope 4824 and 4000A Series only.

Arguments See ps4000SetSigGenBuiltIn()

Returns PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

PICO_USB3_0_DEVICE_NON_USB3_0_PORT

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

API functions

104Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.63 ps4000aSetSimpleTrigger() – set up level triggers
only

PICO_STATUS ps4000aSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PS4000A_CHANNEL source,

int16_t threshold,

PS4000A_THRESHOLD_DIRECTION direction,

uint32_t delay,

int16_t autoTrigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types and does not allow more than
one channel to have a trigger applied to it. Any previous pulse width qualifier is canceled. The trigger threshold
includes a small, fixed amount of hysteresis.

Applicability All modes

Arguments handle, identifier for the scope device.

enabled, zero to disable the trigger, any non-zero value to set the trigger.

source, the channel on which to trigger. See ps4000aSetChannel().

threshold, the ADC count at which the trigger will fire.

direction, the direction in which the signal must move to cause a trigger. The following

directions are supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.

delay, the time, in sample periods, between the trigger occurring and the first sample being
taken.

autoTrigger_ms, the number of milliseconds the device will wait if no trigger occurs. If 0,
the device will wait indefinitely.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_TRIGGER_CHANNEL

PICO_INVALID_CHANNEL

PICO_INVALID_PARAMETER

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

API functions

105Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.64 ps4000aSetTriggerChannelConditions() – specify
which channels to trigger on

PICO_STATUS ps4000aSetTriggerChannelConditions

(

int16_t handle,

PS4000A_CONDITION * conditions,

int16_t nConditions,

PS4000A_CONDITIONS_INFO info

)

This function sets up trigger conditions on the scope's inputs. The trigger is set up by defining an array of one or

more PS4000A_CONDITION structures that are then ANDed together. The function can be called multiple times,
in which case the trigger logic is ORed with that defined by previous calls. This AND-OR logic allows you to create
any possible Boolean function of up to four of the scope's inputs.

To cease ORing trigger channel conditions and start again with a new set, call with info = PS4000A_CLEAR.

You can also call ps4000aSetPulseWidthQualifierConditions() to add timing conditions to the
trigger.

Applicability All modes

Arguments handle, identifier for the scope device.

* conditions, an array of PS4000A_CONDITION structures specifying the conditions
that should be applied to each channel. In the simplest case, the array consists of a single
element. When there are several elements, the overall trigger condition is the logical AND of
all the elements.

nConditions, the number of elements in the conditions array, or zero to switch off
triggering.

info, determines whether the function clears previous conditions:

PS4000A_CLEAR, clears previous conditions

PS4000A_ADD, adds the specified conditions (ORing them with previously set
conditions, if any)

You can combine both actions by passing (PS4000A_CONDITIONS_INFO)

(PS4000A_CLEAR | PS4000A_ADD).

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_MEMORY_FAIL

PICO_TOO_MANY_CHANNELS_IN_USE (if you attempt to create a function of more than
four inputs)

PICO_INVALID_CONDITION_INFO

PICO_INVALID_PARAMETER

PICO_DUPLICATE_CONDITION_SOURCE

PICO_INTERNAL_ERROR

API functions

106Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.64.1 PS4000A_CONDITION structure

A structure of this type is passed to ps4000aSetPulseWidthQualifierConditions() and

ps4000SetTriggerChannelConditions() in the conditions argument to specify the trigger conditions,
and is defined as follows: -

typedef struct tPS4000ACondition

{

PS4000A_CHANNEL source;

PS4000A_TRIGGER_STATE condition;

} PS4000A_CONDITION;

Elements source, the input to the trigger or pulse width qualifier. See ps4000aSetChannel() for
values.

condition, the type of condition that should be applied to each channel. Use any these
constants:

CONDITION_DONT_CARE

CONDITION_TRUE

CONDITION_FALSE

The channels that are set to CONDITION_TRUE or CONDITION_FALSE must all meet their

conditions simultaneously to produce a trigger. Channels set to CONDITION_DONT_CARE
are ignored.

API functions

107Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.65 ps4000aSetTriggerChannelDirections() – set up
signal polarities for triggering

PICO_STATUS ps4000aSetTriggerChannelDirections

(

int16_t handle,

PS4000A_DIRECTION * directions,

int16_t nDirections

)

This function sets the direction of the trigger for the specified channels.

Applicability All modes.

Arguments handle, identifier for the scope device.

* directions, on entry, an array of structures containing trigger directions. See

PS4000A_DIRECTION for allowable values.

nDirections, the length of the directions array.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_INVALID_PARAMETER

API functions

108Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.65.1 PS4000A_DIRECTION structure

A structure of this type is passed to ps4000aSetTriggerChannelDirections() in the directions
argument to specify the trigger direction for a specified source, and is defined as follows: -

typedef struct tPS4000ADirection

{

PS4000A_CHANNEL channel;

PS4000A_THRESHOLD_DIRECTION direction;

} PS4000A_DIRECTION;

Elements

channel, the channel being configured. See ps4000aSetChannel for allowable values.

direction, the trigger direction that should be applied to each channel. Use one of these constants:

Constant Type Direction

PS4000A_ABOVE gated above the upper threshold

PS4000A_ABOVE_LOWER gated above the lower threshold

PS4000A_BELOW gated below the upper threshold

PS4000A_BELOW_LOWER gated below the lower threshold

PS4000A_RISING threshold rising edge, using upper threshold

PS4000A_RISING_LOWER threshold rising edge, using lower threshold

PS4000A_FALLING threshold falling edge, using upper threshold

PS4000A_FALLING_LOWER threshold falling edge, using lower threshold

PS4000A_RISING_OR_FALLING threshold either edge

PS4000A_INSIDE window-qualified inside window

PS4000A_OUTSIDE window-qualified outside window

PS4000A_ENTER window entering the window

PS4000A_EXIT window leaving the window

PS4000A_ENTER_OR_EXIT window either entering or leaving the window

PS4000A_POSITIVE_RUNT window-qualified entering and leaving from below

PS4000A_NEGATIVE_RUNT window-qualified entering and leaving from above

PS4000A_NONE none none

API functions

109Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.66 ps4000aSetTriggerChannelProperties() – set up
trigger thresholds

PICO_STATUS ps4000aSetTriggerChannelProperties

(

int16_t handle,

PS4000A_TRIGGER_CHANNEL_PROPERTIES * channelProperties,

int16_t nChannelProperties,

int16_t auxOutputEnable,

int32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability All modes

Arguments handle, identifier for the scope device.

* channelProperties, an array of PS4000A_TRIGGER_CHANNEL_PROPERTIES
structures describing the requested properties. The array can contain a single element
describing the properties of one channel or a number of elements describing several

channels. If NULL is passed, triggering is switched off.

nChannelProperties, the number of elements in the channelProperties array. If
zero, triggering is switched off.

auxOutputEnable, not used.

autoTriggerMilliseconds, the time in milliseconds for which the scope device will
wait before collecting data if no trigger event occurs. If this is set to zero, the scope device
will wait indefinitely for a trigger.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_TRIGGER_ERROR

PICO_MEMORY_FAIL

PICO_INVALID_TRIGGER_PROPERTY

PICO_DRIVER_FUNCTION

PICO_INTERNAL_ERROR

API functions

110Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.66.1 PS4000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps4000aSetTriggerChannelProperties in the

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tPS4000ATriggerChannelProperties

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PS4000A_CHANNEL channel;

PS4000A_THRESHOLD_MODE thresholdMode;

} PS4000A_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Upper and lower thresholds
The digital triggering hardware in your PicoScope has two independent trigger thresholds called upper and lower.
For some trigger types you can freely choose which threshold to use. The table in

ps4000aSetTriggerChannelDirections() shows which thresholds are available for use with which
trigger types. Dual thresholds are used for pulse-width triggering, when one threshold applies to the level trigger
and the other to the pulse-width qualifier; and for window triggering, when the two thresholds define the upper
and lower limits of the window.

Each threshold has its own trigger and hysteresis settings.

Hysteresis
Each trigger threshold (upper and lower) has an accompanying parameter called hysteresis. This defines an
additional threshold, called the hysteresis threshold, at a small offset from the main threshold. The trigger fires
when the signal crosses the hysteresis threshold and then the main threshold. It will not fire again until the signal
has crossed the both the hysteresis threshold and main threshold again. The double-threshold mechanism
prevents low-amplitude noise on the signal from causing unwanted trigger events.

For a rising-edge trigger the hysteresis threshold is below the main threshold. After one trigger event, the signal
must fall below the hysteresis threshold and then rise above it before the trigger is enabled for the next event.
Conversely, for a falling-edge trigger, the hysteresis threshold is always above the main threshold. After a trigger
event, the signal must rise above the hysteresis threshold and then fall below it before the trigger is enabled for
the next event.

Hysteresis – The trigger fires at A
as the signal rises past both
thresholds. It does not fire at B
because the signal has not passed
the hysteresis threshold. The
trigger fires again at C after the
signal has dipped below the
hysteresis threshold and risen
past both thresholds.

API functions

111Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Elements thresholdUpper, the upper threshold at which the trigger must fire. This is scaled in 16-
bit ADC counts at the currently selected range for that channel.

thresholdUpperHysteresis, the hysteresis by which the trigger must exceed the upper
threshold before it will fire. It is scaled in 16-bit counts.

thresholdLower, the lower threshold at which the trigger must fire. This is scaled in 16-
bit ADC counts at the currently selected range for that channel.

thresholdLowerHysteresis, the hysteresis by which the trigger must exceed the
lower threshold before it will fire. It is scaled in 16-bit counts.

channel, the channel to which the properties apply. See ps4000aSetChannel() for
possible values.

thresholdMode, either a level or window trigger. Use one of these constants:

PS4000A_LEVEL

PS4000A_WINDOW

API functions

112Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.67 ps4000aSetTriggerDelay() – set up post-trigger
delay

PICO_STATUS ps4000aSetTriggerDelay

(

int16_t handle,

uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability All modes (but delay is ignored in streaming mode)

Arguments handle, identifier for the scope device.

delay, the time between the trigger occurring and the first sample, in sample periods. For

example, if delay = 100, the scope would wait 100 sample periods before sampling.
Example: with the PicoScope 4000A Series, at a timebase of 80 MS/s, or 12.5 ns per sample

(timebase = 0) the total delay would be:

100 x 12.5 ns = 1.25 µs

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

113Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.68 ps4000aSigGenArbitraryMinMaxValues() – get AWG
sample value limits

PICO_STATUS ps4000aSigGenArbitraryMinMaxValues

(

int16_t handle,

int16_t * minArbitraryWaveformValue,

int16_t * maxArbitraryWaveformValue,

uint32_t * minArbitraryWaveformSize,

uint32_t * maxArbitraryWaveformSize

)

This function returns the range of possible sample values and waveform buffer sizes that can be supplied to

ps4000aSetSigGenArbitrary() for setting up the arbitrary waveform generator (AWG). These values may
vary between models.

Applicability PicoScope 4824 and 4000A Series.

Arguments handle, identifier for the scope device.

minArbitraryWaveformValue, on exit, the lowest sample value allowed in the

arbitraryWaveform buffer supplied to ps4000aSetSigGenArbitrary().

maxArbitraryWaveformValue, on exit, the highest sample value allowed in the

arbitraryWaveform buffer supplied to ps4000aSetSigGenArbitrary().

minArbitraryWaveformSize, on exit, the minimum value allowed for the

arbitraryWaveformSize argument supplied to ps4000aSetSigGenArbitrary().

maxArbitraryWaveformSize, on exit, the maximum value allowed for the

arbitraryWaveformSize argument supplied to ps4000aSetSigGenArbitrary().

Returns PICO_OK

PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an arbitrary
waveform generator.

PICO_NULL_PARAMETER, if all the parameter pointers are NULL.

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

API functions

114Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.69 ps4000aSigGenFrequencyToPhase() – get phase
increment for signal generator

PICO_STATUS ps4000aSigGenFrequencyToPhase

(

int16_t handle,

double frequency,

PS4000A_INDEX_MODE indexMode,

uint32_t bufferLength,

uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary waveform generator (AWG). The
value returned depends on the length of the buffer, the index mode passed and the device model. The phase

count can then be sent to the driver through ps4000aSetSigGenArbitrary() or

ps4000aSetSigGenPropertiesArbitrary().

Applicability PicoScope 4824 and 4000A Series only.

Arguments handle, identifier for the scope device.

frequency, the required AWG output frequency.

indexMode, see AWG index modes.

bufferLength, the number of samples in the AWG buffer.

phase, on exit, the deltaPhase argument to be sent to the AWG setup function

Returns PICO_OK

PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an AWG.

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, if the frequency is out of range.

PICO_NULL_PARAMETER, if phase is a NULL pointer.

PICO_SIG_GEN_PARAM, if indexMode or bufferLength is out of range.

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

API functions

115Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.70 ps4000aSigGenSoftwareControl() – trigger the
signal generator

PICO_STATUS ps4000aSigGenSoftwareControl

(

int16_t handle,

int16_t state

)

This function causes a trigger event, or starts and stops gating. It is used when the signal generator is set to

SIGGEN_SOFT_TRIG .

Applicability Use with ps4000aSetSigGenBuiltIn() or ps4000aSetSigGenArbitrary().

Arguments handle, identifier for the scope device.

state, sets the trigger gate high or low when the trigger type is set to either

SIGGEN_GATE_HIGH or SIGGEN_GATE_LOW. Ignored for other trigger types.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SIGNAL_GENERATOR

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_MEMORY_FAIL

PICO_INTERNAL_ERROR

PICO_TIMEOUT

PICO_RESOURCE_ERROR

PICO_DEVICE_NOT_FUNCTIONING

PICO_NOT_RESPONDING

API functions

116Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.71 ps4000aStop() – stop data capture
PICO_STATUS ps4000aStop

(

int16_t handle

)

This function stops the scope device from sampling data.

When running the device in streaming mode, always call this function after the end of a capture to ensure that the
scope is ready for the next capture.

When running the device in block mode or rapid block mode, you can call this function to interrupt data capture.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will be

available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability All modes

Arguments handle, identifier for the scope device.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

117Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.72 Callback functions
Callback functions are functions that you create as part of your application to receive information from the

ps4000a driver. After you register a callback function with the driver, the driver will call the function when a
relevant event occurs.

4.72.1 ps4000aBlockReady() – receive notification when
block-mode data ready

typedef void (*ps4000aBlockReady)

(

int16_t handle,

PICO_STATUS status,

void * pParameter

)

This callback function receives a notification when block-mode data is ready.

If you wish to use this feature, you must create this function as part of your application. You register it with the

ps4000a driver using ps4000aRunBlock(), and the driver calls it back when a capture is complete. This
callback function may check that data is available or detect that an error has occurred, but should not attempt to
retrieve captured data by calling other functions.

After the callback function has returned, you can download the data using ps4000aGetValues().

Applicability Block mode only

Arguments handle, identifier for the scope device.

status, indicates whether an error occurred during collection of the data.

pParameter, a void pointer passed from ps4000aRunBlock(). The callback function
can write to this location to send any data, such as a status flag, back to your application.

Returns nothing

API functions

118Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.72.2 ps4000aDataReady() – indicate when post-collection data
ready

typedef void (*ps4000aDataReady)

(

int16_t handle,

PICO_STATUS status,

uint32_t noOfSamples,

int16_t overflow,

void * pParameter

)

This callback function receives a notification when post-collection data is ready after a call to

ps4000aGetValuesAsync().

If you wish to use this feature, you must create this function as part of your application. You register it with the

ps4000a driver using ps4000aGetValuesAsync(), and the driver calls it back when data is ready. You can

then download the data using the ps4000aGetValues() function.

Applicability All modes

Arguments handle, identifier for the scope device.

status, indicates success or failure.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit pattern with bit 0 denoting Channel A.

pParameter, a void pointer passed from ps4000aGetValuesAsync(). The callback
function can write to this location to send any data, such as a status flag, back to the
application. The data type is defined by the application programmer.

Returns nothing

API functions

119Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.72.3 ps4000aProbeInteractions() – callback for PicoConnect
probe events

typedef void (PREF4 *ps4000aProbeInteractions)

(

int16_t handle,

PICO_STATUS status,

PS4000A_USER_PROBE_INTERACTIONS * probes,

uint32_t nProbes

)

This callback function handles notifications of probe changes on scope devices that support PicoConnect™
probes.

If you wish to use this feature, you must create this function as part of your application. You register it with the

ps4000a driver using ps4000aSetProbeInteractionCallback(), and the driver calls it back whenever a
PicoConnect probe generates an error. See Handling PicoConnect probe interactions for more information on this
process.

Applicability PicoScope 4444 only

Arguments handle, identifier for the scope device.

status, indicates success or failure. If multiple errors have occurred, the most general

error is returned here. Probe-specific errors are returned in the status field of the relevant
elements of the probes array.

probes, on entry, pointer to an array of PS4000A_USER_PROBE_INTERACTIONS
structures.

nProbes, the number of elements in the probes array.

Returns nothing

4.72.3.1 PS4000A_USER_PROBE_INTERACTIONS structure

A structure of this type is passed to the ps4000aProbeInteractions() callback function. It is defined as
follows:

typedef struct tPS4000AUserProbeInteractions

{

uint16_t connected;

PS4000A_CHANNEL channel;

uint16_t enabled;

PicoConnectProbe probeName;

uint8_t requiresPower_;

uint8_t isPowered_;

PICO_STATUS status_;

PICO_CONNECT_PROBE_RANGE probeOff;

PICO_CONNECT_PROBE_RANGE rangeFirst_;

API functions

120Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

PICO_CONNECT_PROBE_RANGE rangeLast_;

PICO_CONNECT_PROBE_RANGE rangeCurrent_;

PS4000A_COUPLING couplingFirst_;

PS4000A_COUPLING couplingLast_;

PS4000A_COUPLING couplingCurrent_;

PS4000A_BANDWIDTH_LIMITER_FLAGS filterFlags_;

PS4000A_BANDWIDTH_LIMITER_FLAGS filterCurrent_;

PS4000A_BANDWIDTH_LIMITER defaultFilter_;

} PS4000A_USER_PROBE_INTERACTIONS;

Elements

connected, indicates whether the probe is connected or not. The driver saves information on disconnected
probes in case they are reconnected, in which case it reapplies the previous settings.

channel, the scope channel to which the probe is connected.

enabled, indicates whether the probe is switched on or off.

probeName, identifies the type of probe from the PICO_CONNECT_PROBE enumerated list.

requiresPower_, indicates whether the probe draws power from the scope.

isPowered_, indicates whether the probe is receiving power.

status_, a status code indicating success or failure. See PicoStatus.h for definitions.

probeOff, the range in use when the probe was last switched off.

rangeFirst_, the first applicable range in the PICO_CONNECT_PROBE_RANGE enumerated list.

rangeLast_, the last applicable range in the PICO_CONNECT_PROBE_RANGE enumerated list.

rangeCurrent_, the range currently in use.

couplingFirst_, the first applicable coupling type in the PS4000A_COUPLING list.

couplingLast_, the last applicable coupling type in the PS4000A_COUPLING list.

couplingCurrent_, the coupling type currently in use.

filterFlags_, a bit field indicating which bandwidth limiter options are available.

filterCurrent_, the bandwidth limiter option currently selected.

defaultFilter_, the default bandwidth limiter option for this type of probe.

API functions

121Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.72.4 ps4000aStreamingReady() – indicate when
streaming-mode data ready

typedef void (*ps4000aStreamingReady)

(

int16_t handle,

int32_t noOfSamples,

uint32_t startIndex,

int16_t overflow,

uint32_t triggerAt,

int16_t triggered,

int16_t autoStop,

void * pParameter

)

This callback function receives a notification when streaming-mode data is ready.

If you wish to use this feature, you must create this function as part of your application. You register it with the

ps4000a driver using ps4000aGetStreamingLatestValues(), and the driver calls it back when
streaming-mode data is ready.

Your callback function should do nothing more than copy the data to another buffer within your application. To
maintain the best application performance, the function should return as quickly as possible without attempting
to process or display the data.

You can then download the data using the ps4000aGetValuesAsync() function.

Applicability Streaming mode only

Arguments handle, identifier for the scope device.

noOfSamples, the number of samples to collect.

startIndex, an index to the first valid sample in the buffer. This is the buffer that was

previously passed to ps4000aSetDataBuffer().

overflow, returns a set of flags that indicate whether an overvoltage has occurred on any
of the channels. It is a bit pattern with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the trigger point relative to

startIndex. The trigger point is therefore at startIndex + triggerAt. This

parameter is valid only when triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-zero, a trigger occurred at

the location indicated by triggerAt.

autoStop, the flag that was set in the call to ps4000aRunStreaming().

pParameter, a void pointer passed from ps4000aGetStreamingLatestValues().
The callback function can write to this location to send any data, such as a status flag, back
to the application.

Returns nothing

API functions

122Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

4.73 Wrapper functions
The software development kit (SDK) for your PicoScope device contains wrapper dynamic link library (DLL) files

in the lib subdirectory of your SDK installation for 32-bit and 64-bit systems. The wrapper functions provided by
the wrapper DLLs are for use with programming languages such as MathWorks MATLAB, National Instruments
LabVIEW and Microsoft Excel VBA that do not support features of the C programming language such as callback
functions.

The source code contained in the wrapper project contains a description of the functions and the input and output
parameters.

4.73.1 Streaming mode

Below we explain the sequence of calls required to capture data in streaming mode using the wrapper API
functions.

The ps4000aWrap.dll wrapper DLL has a callback function for streaming data collection that copies data
from the driver buffer specified to a temporary application buffer of the same size. To do this, you must register
the driver and application buffers with the wrapper and specify the corresponding channel(s) as being enabled.
You should process the data in the temporary application buffer accordingly, for example by copying the data into
a large array.

Procedure:

1. Open the oscilloscope using ps4000aOpenUnit().

1a. Inform the wrapper of the number of channels on the device by calling setChannelCount().

2. Select channels, ranges and AC/DC coupling using ps4000aSetChannel().

2a. Inform the wrapper which channels have been enabled by calling setEnabledChannels().

3. Use the appropriate trigger setup functions. For programming languages that do not support structures, use the
wrapper's advanced trigger setup functions.

4. Call ps4000aSetDataBuffer() (or for aggregated data collection ps4000aSetDataBuffers()) to tell
the driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into which the data will be

copied. Call setAppAndDriverBuffers() (or setMaxMinAppAndDriverBuffers() for aggregated data
collection).

5. Start the oscilloscope running using ps4000aRunStreaming().

6. Loop and call GetStreamingLatestValues() and IsReady() to get data and flag when the wrapper is
ready for data to be retrieved.

6a. Call the wrapper’s AvailableData() function to obtain information on the number of samples collected
and the start index in the buffer.

6b. Call the wrapper’s IsTriggerReady() function for information on whether a trigger has occurred and the
trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

8. Call AutoStopped() if the autoStop parameter has been set to TRUE in the call to

ps4000aRunStreaming().

API functions

123Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

9. Repeat steps 6 to 8 until AutoStopped() returns true or you wish to stop data collection.

10. Call ps4000aStop(), even if the autoStop parameter was set to TRUE.

11. To disconnect a device, call ps4000aCloseUnit().

4.73.2 Advanced triggers

Use the following functions to set up advanced triggers. ps4000aWrap.c contains the descriptions of the
functions.

· setTriggerConditions()

· setTriggerDirections()

· setTriggerProperties()

· setPulseWidthQualifierConditions()

4.73.3 Probe interactions

Applicability PicoScope 4444 only

Use the following functions to set up probe interaction handling. ps4000aWrap.c contains the descriptions of
the functions.

· setProbeInteractionCallback()

· hasProbeStateChanged()

· clearProbeStateChanged()

· getUserProbeInteractionsInfo()

· getNumberOfProbes()

· getUserProbeTypeInfo()

· getUserProbeRangeInfo()

· getUserProbeCouplingInfo()

· getUserProbeBandwidthInfo()

The process to use the probe interaction functions is as follows:

1. Call setProbeInteractionCallback() after opening a connection to the device (ensure any power

status codes are processed) and before calling ps4000aSetChannel().

2. Poll hasProbeStateChanged().

3. Retrieve the initial probe information after a short delay of a few milliseconds:

a. If your programming language supports structs call getUserProbeInteractionsInfo(), otherwise

b. Call the following functions:

i. getNumberOfProbes() to obtain the number of probes and status code from the callback function

ii. getUserProbeTypeInfo() to retrieve information about the type of probe, channel connected on
and power for the probe number specified

iii. getUserProbeRangeInfo() to retrieve information on the probe range for the probe number
specified

API functions

124Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

iv. getUserProbeCouplingInfo() to retrieve information on the probe coupling for the probe
number specified

v. getUserProbeBandwidthInfo()to retrieve information on the probe bandwidth limiter options for
the probe number specified

vi. clearProbeStateChanged() – to reset the flag that indicates if there has been a change to the
probe status

4. Repeat step 3 to obtain the actual probe information.

5. For subsequent queries to check if the probe status has changed, either call the

hasProbeStateChanged() function once or poll it for a defined period of time to check if there have
been any changes.

The probe number is zero-based.

Reference

125Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

5 Reference

5.1 Driver status codes
Every function in the ps4000a.dll driver returns a status code from the list of PICO_STATUS values defined in

the PicoStatus.h header file supplied with the SDK. See the header file for more information.

5.2 Enumerated types and constants
Enumerated types and constants are defined in the files ps4000aApi.h and PicoConnectProbes.h, which
are included in the PicoSDK. We recommend that you refer to these constants by name unless your programming
environment forces you to use numeric values.

5.3 Numeric data types
Here is a list of the sizes and ranges of the numeric data types used in the ps4000a API.

Type Bits Signed or unsigned?

int8_t 8 signed

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)

double 64 signed (IEEE 754)

int64_t 64 signed

uint64_t 64 unsigned

5.4 Glossary
ADC. Analog-to-digital converter. The electronic component in a PC oscilloscope that converts analog signals
from the inputs into digital data suitable for transmission to the PC.

Block mode. A sampling mode in which the computer prompts the oscilloscope to collect a block of data into its
internal memory before stopping the oscilloscope and transferring the whole block into computer memory.
Choose this mode of operation when the input signal being sampled contains high frequencies. Note: To avoid
sampling errors, the maximum input frequency must be less than half the sampling rate.

Buffer size. The size of the oscilloscope buffer memory, measured in samples. The buffer allows the
oscilloscope to sample data faster than it can transfer it to the computer.

Callback. A mechanism that the ps4000a driver uses to communicate asynchronously with your application. At
design time, you add a function (a callback function) to your application to deal with captured data. At run time,
when you request captured data from the driver, you also pass it a pointer to your function. The driver then returns
control to your application, allowing it to perform other tasks until the data is ready. When this happens, the driver
calls your function in a new thread to signal that the data is ready. It is then up to your function to communicate
this fact to the rest of your application.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's input path. Use AC mode for
small signals that may be superimposed on a DC level. Use DC mode for measuring absolute voltage levels. Set

the coupling mode using ps4000aSetChannel().

Reference

126Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Differential oscilloscope. An oscilloscope that measures the difference between two input voltages on each
channel. Conventional oscilloscopes are single-ended, meaning that they measure the difference between one
input voltage and a common ground on each channel.

GS/s. Gigasamples (billions of samples) per second.

Maximum sampling rate. A figure indicating the maximum number of samples the oscilloscope can acquire per
second. The higher the sampling rate of the oscilloscope, the more accurate the representation of the high-
frequency details in a fast signal.

MS/s. Megasamples (millions of samples) per second.

PC Oscilloscope. A measuring instrument consisting of a Pico Technology scope device and the PicoScope
software. It provides all the functions of a bench-top oscilloscope without the cost of a display, hard disk,
network adaptor and other components that your PC already has.

PicoConnect™. A range of probes compatible with devices such as the PicoScope 4444 differential oscilloscope.

PicoConnect probe types can be identified by the ps4000a driver, allowing an application to configure itself
automatically when a probe is plugged is or unplugged. Some probes offer additional functions such as software-
controlled range setting.

PicoScope 4000 Series. A range of high-resolution PC Oscilloscopes from Pico Technology. The range includes
two-channel and four-channel models, with or without a built-in function generator and arbitrary waveform
generator.

Streaming mode. A sampling mode in which the oscilloscope samples data and returns it to the computer in an
unbroken stream. This mode allows the capture of data sets whose size is not limited by the size of the scope's
memory buffer, at sampling rates up to 160 million samples per second.

Timebase. The sampling rate that the scope uses to acquire data. The timebase can be set to any value returned

by the ps4000aGetTimebase() or ps4000aGetTimebase2() functions.

Trigger bandwidth. The external trigger input is less sensitive to very high-frequency input signals than to low-
frequency signals. The trigger bandwidth is the frequency at which a trigger signal will be attenuated by 3 dB.

USB 2.0. Universal Serial Bus (High Speed). The maximum signaling rate is 480 megabits per second.

USB 3.0. Universal Serial Bus (SuperSpeed). The maximum signaling rate is 5 gigabits per second. Also known as
USB 3.1 Gen 1.

Vertical resolution. A value, in bits, indicating the precision with which the oscilloscope converts input voltages to
digital values.

Voltage range. The range of input voltages that the oscilloscope can measure. For example, a voltage range of
±100 mV means that the oscilloscope can measure voltages between –100 mV and +100 mV. Input voltages
outside this range will not damage the instrument as long as they remain within the protection limits of ±200 V.

Index

127Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Index

A
AC/DC coupling 11

setting 82

Aggregation 13, 21

querying ratio 38

Analog offset 34

API function calls 27

Arbitrary waveform generator (AWG) 95

index modes 98

Average 13

B
Bandwidth-limiting filter 80

Block mode 14, 15, 117

polling status 62

starting 76

using 15

C
CAL pins 81

Callback function

block mode 117

probe interactions 119

streaming mode 121

Callback functions 117

Channel information 35

Channel selection 11, 82

Channel settings 82

Closing a scope device 30

Constants 125

D
Data acquisition 21

Data buffers, setting 84, 85

Decimation 13

Disk space 9

Downsampling 13

Driver 10

status codes 125

E
Enumerated types 125

Enumerating oscilloscopes 32

F
Filter, bandwidth-limiting 80

FlexRes 86

Function calls 27

Functions

ps4000aBlockReady 117

ps4000aChangePowerSource 28

ps4000aCloseUnit 30

ps4000aCurrentPowerSource 31

ps4000aDataReady 118

ps4000aEnumerateUnits 32

ps4000aFlashLed 33

ps4000aGetAnalogueOffset 34

ps4000aGetChannelInformation 35

ps4000aGetDeviceResolution 37

ps4000aGetMaxDownSampleRatio 38

ps4000aGetMaxSegments 39

ps4000aGetMinimumTimebaseStateless 40

ps4000aGetNoOfCaptures 41

ps4000aGetNoOfProcessedCaptures 42

ps4000aGetStreamingLatestValues 43

ps4000aGetTimebase 44

ps4000aGetTimebase2 45

ps4000aGetTriggerTimeOffset 46

ps4000aGetTriggerTimeOffset64 48

ps4000aGetUnitInfo 49

ps4000aGetValues 50

ps4000aGetValuesAsync 52

ps4000aGetValuesBulk 53

ps4000aGetValuesOverlapped 55, 56

ps4000aGetValuesOverlappedBulk 56, 57

ps4000aGetValuesTriggerTimeOffsetBulk 58

ps4000aGetValuesTriggerTimeOffsetBulk64 60

ps4000aIsLedFlashing 61

ps4000aIsReady 62

ps4000aIsTriggerOrPulseWidthQualifierEnabled 63

ps4000aMaximumValue 64

ps4000aMemorySegments 65

ps4000aMinimumValue 66

ps4000aNearestSampleIntervalStateless 68

ps4000aNoOfStreamingValues 67

ps4000aOpenUnit 69

ps4000aOpenUnitAsync 70

ps4000aOpenUnitAsyncWithResolution 71

ps4000aOpenUnitProgress 72

ps4000aOpenUnitWithResolution 73

ps4000aPingUnit 74

ps4000aProbeInteractions 119

ps4000aQueryOutputEdgeDetect 75

ps4000aRunBlock 76

Index

128Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Functions

ps4000aRunStreaming 78

ps4000aSetBandwidthFilter 80

ps4000aSetCalibrationPins 81

ps4000aSetChannel 82

ps4000aSetDataBuffer 84

ps4000aSetDataBuffers 85

ps4000aSetDeviceResolution 86

ps4000aSetEts 87

ps4000aSetEtsTimeBuffer 88

ps4000aSetEtsTimeBuffers 89

ps4000aSetNoOfCaptures 90

ps4000aSetOutputEdgeDetect 91

ps4000aSetProbeInteractionCallback 92

ps4000aSetPulseWidthQualifierConditions 93

ps4000aSetPulseWidthQualifierProperties 94

ps4000aSetSigGenArbitrary 95

ps4000aSetSigGenBuiltIn 100

ps4000aSetSigGenPropertiesArbitrary 102

ps4000aSetSigGenPropertiesBuiltIn 103

ps4000aSetSimpleTrigger 104

ps4000aSetTriggerChannelConditions 105

ps4000aSetTriggerChannelDirections 107

ps4000aSetTriggerChannelProperties 109

ps4000aSetTriggerDelay 112

ps4000aSigGenArbitraryMinMaxValues 113

ps4000aSigGenFrequencyToPhase 114

ps4000aSigGenSoftwareControl 115

ps4000aStop 116

ps4000aStreamingReady 121

H
Hysteresis 104, 110

I
Installation 9

L
LED

programming 33, 61

License conditions 8

M
Memory in scope 15

Memory segments 65

Multi-unit operation 24

O
Opening a unit 69, 70, 71, 72, 73

Operating system 9

P
PICO_STATUS 125

PicoConnect probes 26

callback 92

detecting 119

picoipp.dll 10

PicoScope 4000 Series 7

Power source 28, 31

Probe interactions 26

Probes

compensation 81

interactions structure 119

Processor 9

ps4000a.dll 10

PS4000A_CHANNEL constants 82

PS4000A_CONDITION structure 106

PS4000A_DIRECTION structure 108

PS4000A_LEVEL 110

PS4000A_MAX_VALUE 11

PS4000A_MIN_VALUE 11

PS4000A_THRESHOLD_DIRECTION constants 108

PS4000A_THRESHOLD_MODE constants 110

PS4000A_TRIGGER_CHANNEL_PROPERTIES structure

110

PS4000A_TRIGGER_STATE constants 106

PS4000A_USER_PROBE_INTERACTIONS structure 119

PS4000A_WINDOW 110

Pulse width trigger 93, 94

R
Rapid block mode 14, 16

using 16

Retrieving data 50, 52

block mode, deferred 55

rapid block mode, deferred 57, 58

stored 23

streaming mode 43

S
Sampling rate

maximum 15

Scaling 11

Segments

maximum number 39

Index

129Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.ps4000apg.en-7

PicoScope 4000 Series (A API) Programmer's Guide

Serial numbers 32

Signal generator

arbitrary waveforms 95

built-in waveforms 100

software trigger 115

Status codes 125

Stopping sampling 116

Streaming mode 14, 21

getting number of samples 67

retrieving data 43

starting 78

using 22

Synchronizing units 24

System requirements 9

T
Timebase 24

get nearest sampling interval 68

querying 40

setting 44, 45

Trademarks 8

Trigger 12

conditions 105

delay 112

directions 107, 108

edge detection, querying 75

edge detection, setting 91

pulse width qualifier 63, 93, 94

pulse width qualifier conditions 106

setting up 104

time offset 46, 48

U
USB 9

V
Voltage ranges 11

W
Windows, Microsoft 9

WinUsb.sys 10

Wrapper functions 122

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Copyright © 2014–2020 Pico Technology Ltd. All rights reserved.

ps4000apg.en-7

Pico Technology
320 N Glenwood Blvd
Tyler
TX 75702
United States

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

sales@picotech.com
support@picotech.com

pico.asia-pacific@picotech.com

Asia-Pacif ic regional
off ice:

Tel: +44 (0) 1480 396 395

North Amer ica regional
off ice:

UK global headquar ters :

Tel: +1 800 591 2796 Tel: +86 21 2226-5152

www.picotech.com

sales@picotech.com
support@picotech.com

	Welcome
	Introduction
	License agreement
	Trademarks
	System requirements
	Installation instructions

	Programming with the ps4000a API
	Driver
	Voltage ranges
	Channel selection
	Triggering
	Downsampling
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Combining several oscilloscopes
	Handling PicoConnect probe interactions

	API functions
	ps4000aChangePowerSource() – handle dual-port USB powering
	ps4000aCloseUnit() – close a scope device
	ps4000aCurrentPowerSource() – read current power source
	ps4000aEnumerateUnits() – find out how many units are connected
	ps4000aFlashLed() – flash the front-panel LED
	ps4000aGetAnalogueOffset() – find the allowable analog offset range
	ps4000aGetChannelInformation() – find out if extra ranges available
	ps4000aGetCommonModeOverflow() – find out which channels have overflowed
	ps4000aGetDeviceResolution() – query the ADC resolution
	ps4000aGetMaxDownSampleRatio() – find out downsampling ratio for data
	ps4000aGetMaxSegments() – get maximum number of memory segments
	ps4000aGetMinimumTimebaseStateless() – query shortest timebase
	ps4000aGetNoOfCaptures() – get number of rapid block captures
	ps4000aGetNoOfProcessedCaptures() – get number of downsampled rapid block captures
	ps4000aGetStreamingLatestValues() – get streaming data while scope is running
	ps4000aGetTimebase() – find out what timebases are available
	ps4000aGetTimebase2() – find out what timebases are available
	ps4000aGetTriggerTimeOffset() – read trigger timing adjustments (32-bit)
	ps4000aGetTriggerTimeOffset64() – read trigger timing adjustments (64-bit)
	ps4000aGetUnitInfo() – read information about scope device
	ps4000aGetValues() – retrieve block-mode data
	ps4000aGetValuesAsync() – retrieve block or streaming data
	ps4000aGetValuesBulk() – retrieve more than one waveform at a time
	ps4000aGetValuesOverlapped() – retrieve data in overlapping blocks
	Using the GetValuesOverlapped functions

	ps4000aGetValuesOverlappedBulk() – retrieve overlapping data from multiple segments
	ps4000aGetValuesTriggerTimeOffsetBulk() – get trigger timing adjustments (multiple)
	ps4000aGetValuesTriggerTimeOffsetBulk64() – get trigger timing adjustments (multiple)
	ps4000aIsLedFlashing() – read status of LED
	ps4000aIsReady() – poll the driver in block mode
	ps4000aIsTriggerOrPulseWidthQualifierEnabled() – find out whether trigger is enabled
	ps4000aMaximumValue() – get maximum allowed sample value
	ps4000aMemorySegments() – divide scope memory into segments
	ps4000aMinimumValue() – get minimum allowed sample value
	ps4000aNoOfStreamingValues() – get number of samples in streaming mode
	ps4000aNearestSampleIntervalStateless() – find nearest available sampling interval
	ps4000aOpenUnit() – open a scope device
	ps4000aOpenUnitAsync() – open a scope device without waiting
	ps4000aOpenUnitAsyncWithResolution() – open a flexible-resolution scope
	ps4000aOpenUnitProgress() – check progress of OpenUnit() call
	ps4000aOpenUnitWithResolution() – open a flexible-resolution scope
	ps4000aPingUnit() – check that unit is responding
	ps4000aQueryOutputEdgeDetect() – query special trigger mode
	ps4000aRunBlock() – start block mode
	ps4000aRunStreaming() – start streaming mode
	ps4000aSetBandwidthFilter() – enable the bandwidth limiter
	ps4000aSetCalibrationPins() – set up the CAL output pins
	ps4000aSetChannel() – set up input channels
	ps4000aSetDataBuffer() – register data buffer with driver
	ps4000aSetDataBuffers() – register min/max data buffers with driver
	ps4000aSetDeviceResolution() – set up a FlexRes scope
	ps4000aSetEts() – set up equivalent-time sampling (ETS)
	ps4000aSetEtsTimeBuffer() – set up 64-bit buffer for ETS time data
	ps4000aSetEtsTimeBuffers() – set up 32-bit buffers for ETS time data
	ps4000aSetNoOfCaptures() – set number of rapid block captures
	ps4000aSetOutputEdgeDetect() – set special trigger mode
	ps4000aSetProbeInteractionCallback() – register callback function for PicoConnect events
	ps4000aSetPulseWidthQualifierConditions() – set up pulse width triggering
	ps4000aSetPulseWidthQualifierProperties() – set up pulse width triggering
	ps4000aSetSigGenArbitrary() – set up arbitrary waveform generator
	AWG index modes
	Calculating deltaPhase

	ps4000aSetSigGenBuiltIn() – set up function generator
	ps4000aSetSigGenPropertiesArbitrary() – set up arbitrary waveform generator
	ps4000aSetSigGenPropertiesBuiltIn() – set up function generator
	ps4000aSetSimpleTrigger() – set up level triggers only
	ps4000aSetTriggerChannelConditions() – specify which channels to trigger on
	PS4000A_CONDITION structure

	ps4000aSetTriggerChannelDirections() – set up signal polarities for triggering
	PS4000A_DIRECTION structure

	ps4000aSetTriggerChannelProperties() – set up trigger thresholds
	PS4000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps4000aSetTriggerDelay() – set up post-trigger delay
	ps4000aSigGenArbitraryMinMaxValues() – get AWG sample value limits
	ps4000aSigGenFrequencyToPhase() – get phase increment for signal generator
	ps4000aSigGenSoftwareControl() – trigger the signal generator
	ps4000aStop() – stop data capture
	Callback functions
	ps4000aBlockReady() – receive notification when block-mode data ready
	ps4000aDataReady() – indicate when post-collection data ready
	ps4000aProbeInteractions() – callback for PicoConnect probe events
	PS4000A_USER_PROBE_INTERACTIONS structure

	ps4000aStreamingReady() – indicate when streaming-mode data ready

	Wrapper functions
	Streaming mode
	Advanced triggers
	Probe interactions

	Reference
	Driver status codes
	Enumerated types and constants
	Numeric data types
	Glossary

