SPECIFICATIONS

PCIe-5764

16-Bit, 1 GS/s, 4-Channel PCI FlexRIO Digitizer Device

This document lists the specifications for the PCIe-5764. Specifications are subject to change without notice. For the most recent device specifications, refer to *ni.com/support*.

Note These specifications are typical at 25 °C unless otherwise noted.

Contents

Definitions	1
Digital I/O	. 2
Digital I/O Single-Ended Channels	
Digital I/O High-Speed Serial MGT	3
Reconfigurable FPGA	
Onboard DRAM	
Analog Input	. 5
General Characteristics	
Typical Specifications	. 5
REF/CLK IN	
General Characteristics	13
Bus Interface	16
Maximum Power Requirements	16
Physical	
Environment.	17
Operating Environment	17
Storage Environment	

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- Measured specifications describe the measured performance of a representative model.

Digital I/O

Connector	Molex [™] Nano-Pitch I/O [™]
5.0 V Power	±5%, 50 mA maximum, nominal

Table 1. Digital I/O Signal Characteristics

Signal	Туре	Direction	
MGT Tx± <30>1	Xilinx UltraScale GTH	Output	
MGT Rx± <30>1	Xilinx UltraScale GTH	Input	
DIO <70>	Single-ended	Bidirectional	
5.0 V	DC	Output	
GND	Ground	_	

Digital I/O Single-Ended Channels

Number of channels	8
Signal type	Single-ended
Voltage families	3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V
Input impedance	100 kΩ, nominal
Output impedance	50 Ω, nominal
Direction control	Per channel
Minimum required direction change latency	200 ns
Maximum output toggle rate	$60~\text{MHz}$ with $100~\mu\text{A}$ load, nominal

Table 2. Digital I/O Single-Ended DC Signal Characteristics²

Voltage Family	V _{IL}	V _{IH}	V _{OL} (100μA load)	V _{OH} (100μA load)	Maximum DC Drive Strength
3.3 V	0.8 V	2.0 V	0.2 V	3.0 V	24 mA
2.5 V	0.7 V	1.6 V	0.2 V	2.2 V	18 mA

 $^{^{1}}$ Multi-gigabit transceiver (MGT) signals are available on devices with KU040 and KU060 FPGAs only.

Voltage levels are guaranteed by design through the digital buffer specifications.

Table 2. Digital I/O Single-Ended DC Signal Characteristics² (Continued)

Voltage Family	V _{IL}	V _{IH}	V _{OL} (100μA load)	V _{OH} (100μA load)	Maximum DC Drive Strength
1.8 V	0.62 V	1.29 V	0.2 V	1.5 V	16 mA
1.5 V	0.51 V	1.07 V	0.2 V	1.2 V	12 mA
1.2 V	0.42 V	0.87 V	0.2 V	0.9 V	6 mA

Digital I/O High-Speed Serial MGT³

Note MGTs are available on devices with KU040 and KU060 FPGAs only.

Data rate	500 Mbps to 16.375 Gbps, nominal
Number of Tx channels	4
Number of Rx channels	4
I/O AC coupling capacitor	100 nF
MGT TX± Channels	
Minimum differential output voltage ⁴	170 mV pk-pk into 100 Ω , nominal
I/O coupling	AC-coupled with 100 nF capacitor
MGT RX± Channels	
Differential input voltage range	
≤ 6.6 Gb/s	150 mV pk-pk to 2000 mV pk-pk, nominal
> 6.6 Gb/s	150 mV pk-pk to 1250 mV pk-pk, nominal
Differential input resistance	100 Ω, nominal
I/O coupling	DC-coupled, requires external capacitor \(\triangle \)

Reconfigurable FPGA

PCIe-5764 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PCIe-5764 FPGA options.

² Voltage levels are guaranteed by design through the digital buffer specifications.

³ For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

⁴ 800 mV pk-pk when transmitter output swing is set to the maximum setting.

Table 3. Reconfigurable FPGA Options

		•		
	KU035	KU040	KU060	
LUTs	203,128	242,200	331,680	
DSP48 slices (25 × 18 multiplier)	1,700	1,920	2,760	
Embedded Block RAM	19.0 Mb 21.1 Mb		38.0 Mb	
Default timebase	80 MHz			
Timebase reference sources	S Onboard 100 MHz oscillator			
Data transfers	DMA, interrupts, programmed I/O	, , , , ,		
Number of DMA channels	60			

Note The Reconfigurable FPGA Options table depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

Note For FPGA designs using the majority of KU040 or KU060 FPGA resources while running at clock rates over 150 MHz, the module may require more power than is available. If the module attempts to draw more than allowed per its specification, the module protects itself and reverts to a default FPGA personality. Refer to the getting started guide for your module or contact NI support for more information

Onboard DRAM

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank
Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Analog Input

Notice The maximum input signal levels are valid only when the module is powered on. To avoid permanent damage to the PCIe-5764, do not apply a signal to the device when the module is powered down.

General Characteristics

Number of channels	4, single-ended, simultaneously sampled
Connector type	SMA
Input impedance	50 Ω
Input coupling	AC or DC ⁵
Sample rate	
Internal Sample Clock	1 GHz
External Sample Clock	1 GHz
Analog-to-digital converter (ADC)	ADS54J60, 16-bit resolution

Typical Specifications

Full-scale input range (normal op	perating conditions)
AC-coupled	$2.05 V_{pp}$ (10.22 dBm) at 10 MHz
DC-coupled	2.00 V _{pp} (10 dBm)
Gain accuracy	
AC-coupled	±0.1 dB at 10 MHz
DC-coupled	±0.79% at DC
DC offset	
AC-coupled	±22 μV
DC-coupled	±363 μV
Bandwidth (-3 dB) ⁶	
AC-coupled	0.07 MHz to 1.15 GHz^7
DC-coupled	DC to 400 MHz

⁵ Only one analog input path type is populated.

⁶ Normalized to 10 MHz.

Maximum bandwidth for full scale input signal is 400 MHz. See the ADS54J60 datasheet for details on maximum supported amplitude for frequencies greater than 400 MHz.

Table 4. Single Tone Spectral Performance

		AC-Coupled	t	DC-Coupled		
	Input Frequency			Ir	put Frequen	ıcy
	10.1 MHz	123.1 MHz	199.1 MHz	10.1 MHz	123.1 MHz	199.1 MHz
SNR ⁸ (dBFS)	69.8	68.7	67	68.7	67.5	65.8
SINAD ⁸ (dBFS)	68.7	67.6	66.7	68.1	67.1	65.3
SFDR (dBc)	-80.7	-81.8	-75.6	-76.6	-75.8	-73.4
ENOB ⁹ (Bits)	11.1	10.9	10.8	11.0	10.9	10.6

Note Excludes ADC interleaving spurs.

Table 5. Noise Spectral Density

Module	nV/rt (Hz)	dBm/Hz	dBFS/Hz
AC-coupled	9.7	-147.3	-157.5
DC-coupled	11.9	-145.5	-155.5

Note Noise spectral density is verified using a 50 Ω terminator connected to the input.

 $^{^8\,}$ Measured with a -1 dBFS signal and corrected to full-scale. 1 kHz resolution bandwidth.

⁹ Calculated from SINAD and corrected to full-scale.

Figure 1. AC-Coupled Single Tone Spectrum (10.1 MHz, -1 dBFS, 1 kHz RBW), Measured

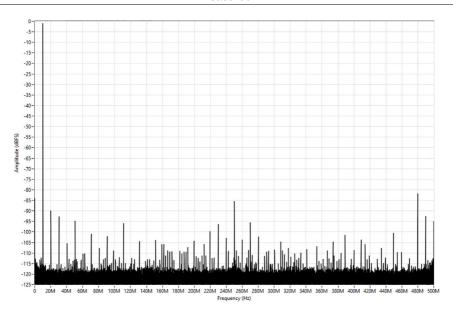


Figure 2. AC-Coupled Single Tone Spectrum (123.1 MHz, -1 dBFS, 1 kHz RBW), Measured

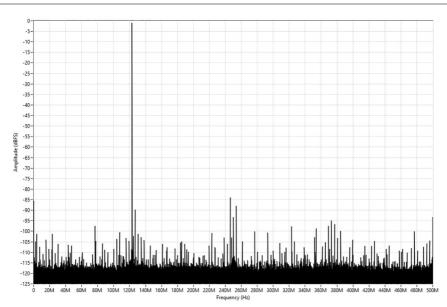


Figure 3. AC-Coupled Single Tone Spectrum (199.1 MHz, -1 dBFS, 1 kHz RBW), Measured

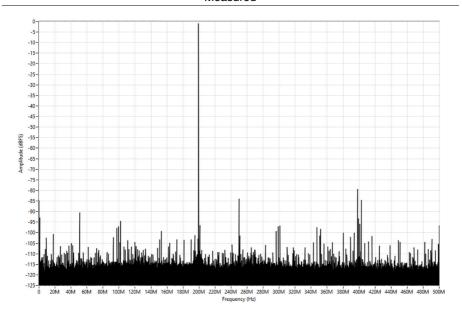


Figure 4. DC-Coupled Single Tone Spectrum (10.1 MHz, -1 dBFS, 1 kHz RBW), Measured

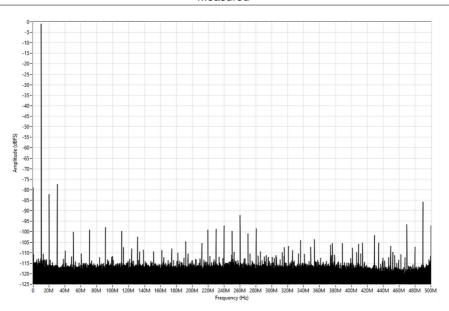


Figure 5. DC-Coupled Single Tone Spectrum (123.1 MHz, -1 dBFS, 1 kHz RBW), Measured

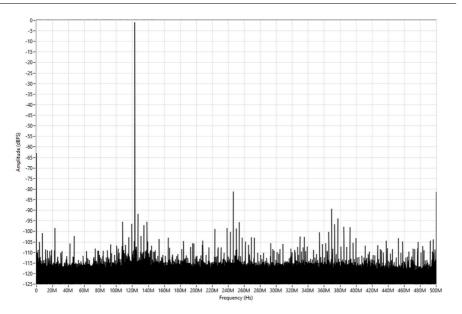
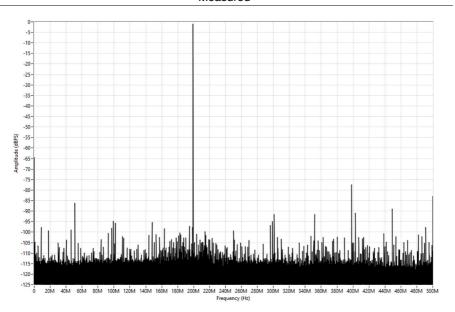



Figure 6. DC-Coupled Single Tone Spectrum (199.1 MHz, -1 dBFS, 1 kHz RBW), Measured

Channel-to-channel crosstalk	AC-coupled, measured	
1 MHz	-87 dB	
100 MHz	-90 dB	
250 MHz	-85 dB	
400 MHz	-84 dB	
Channel-to-channel crosstalk I	OC-coupled, measured	
1 MHz	-88 dB	
100 MHz	-84 dB	
250 MHz	-75 dB	
400 MHz	-75 dB	

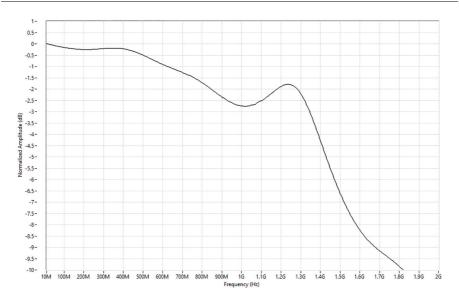


Figure 8. AC-Coupled Passband Flatness for Full Scale Input Supported Frequency Range, Measured

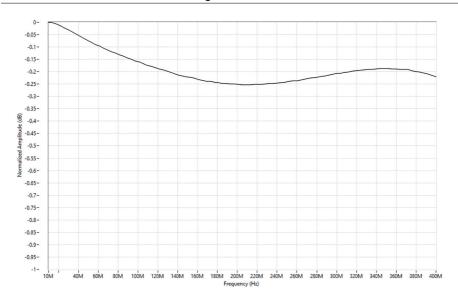


Figure 9. DC-Coupled Frequency Response, Measured

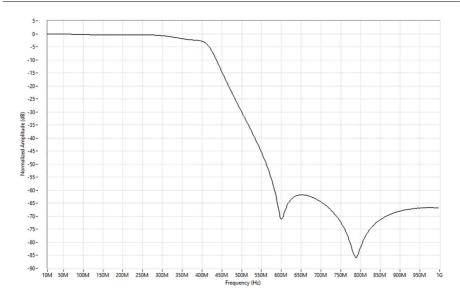


Figure 10. DC-Coupled Frequency Response Zoomed In, Measured

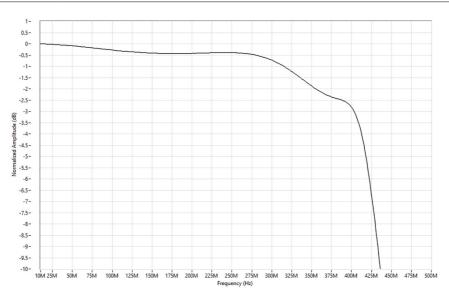
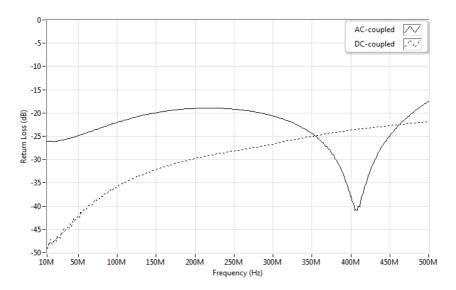



Figure 11. Input Return Loss, Measured

REF/CLK IN

General Characteristics

SMA
50 Ω
AC
$0.3~\mathrm{V_{pp}}$ to $4~\mathrm{V_{pp}}$
$0.3~V_{pp}$ to $4~V_{pp}$
±12 V DC, 4 V _{pp} AC
45% to 55%
±0.5 ppm
140 fs RMS
143 fs RMS

 $^{^{10}}$ Integrated from 1 kHz to 10 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

Table 6. Clock Configuration Options

Table of Glock Comigaration Options			
Clock Configuration	External Clock Type	External Clock Frequency	Description
Internal Reference Clock ¹¹	_		The internal Sample Clock locks to an onboard voltage-controlled temperature compensated crystal oscillator (VCTCXO).
Internal Baseboard Reference Clock	_	10 MHz	The internal Sample Clock locks to the 10 MHz Reference Clock provided from the FPGA baseboard.
External Reference Clock (REF/CLK IN)	Reference Clock	10 MHz ¹²	The internal Sample Clock locks to an external Reference Clock, which is provided through the REF/CLK IN front panel connector.
External Sample Clock (REF/CLK IN)	Sample Clock	1 GHz	An external Sample Clock can be provided through the REF/CLK IN front panel connector.

Default clock configuration.

The PLL Reference Clock must be accurate to ±25 ppm.

Figure 12. AC-Coupled Phase Noise with 385.6 MHz Input Tone, Measured

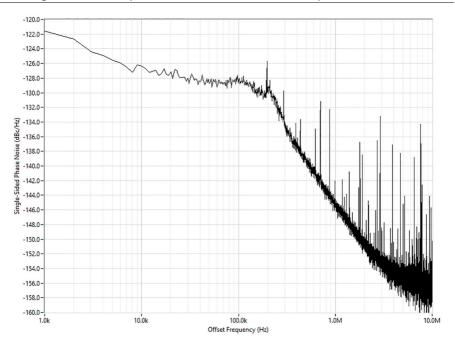
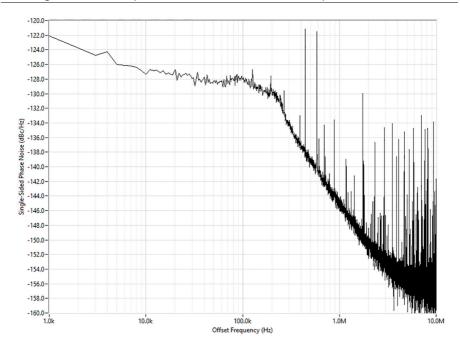



Figure 13. DC-Coupled Phase Noise with 385.6 MHz Input Tone, Measured

Bus Interface

Card edge form factor	PCI Express Gen-3 x8
Slot compatibility	x8 and x16 PCI Express

Maximum Power Requirements

Note Power requirements are dependent on the contents of the LabVIEW FPGA VI used in your application.

+3.3 V	4.5 A
+12 V	5 A
Maximum total power	75 W

Physical

Dimensions (including I/O bracket, not including connectors)	12.6 cm \times 26.3 cm \times 4 cm (5.0 in. \times 10.4 in. \times 1.6 in.)
Weight	990 g (35 oz)
PCI Express mechanical form factor	Standard height, three-quarter length, double slot
Integrated air mover (fan)	Yes
Maximum rear panel exhaust airflow	84 m ³ /h (50 CFM) (without any chassis impedance)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Operating temperature, local ¹³	0 °C to 45 °C
Operating humidity	10% to 90% RH, noncondensing

Storage Environment

Ambient temperature range	-20 °C to 70 °C
Relative humidity range	5% to 95% RH, noncondensing

¹³ For PCI Express adapter cards with integrated air movers, NI defines the local operational ambient environment to be at the fan inlet. For cards without integrated air movers, NI defines the local operational ambient environment to be 25 mm (1 in.) upstream of the leading edge of the card.

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015. © 2019—2020 National Instruments. All rights reserved.

377967B-01 January 28, 2020