emin

GOTT GOTT-MSP-170 超音波被动线路设计培训系统

  • 制造商: GOTT
    Model: GOTT-MSP-170
    P/N: 170-000
    来源: Malaysia
    保障: 12 month
    • 报价要求 报价要求
  • 联系
  • 价格合理详情请致电

    热线:   (+84) 966520220

    电话:  +84 (24) 62923267


      

PRODUCT MODULES

DESIGN AND IMPLEMENTATION OF SWITCH & ATTENUATOR - CODE 170-001

Design and Implementation of Switch 

• Experiment 1: Single Pole SPDT Switching (Operation Frequency: 2400 MHz; Return Loss: > 10 dB; Insertion Loss: < 3 dB; Isolation: > 10 dB) 

• Experiment 2: Double Pole SPDT Switching (Operation Frequency: 2400 MHz; Return Loss: > 10 dB; Insertion Loss: < 3 dB; Isolation: > 10 Db) 

• Experiment 3: Doubly Poles High Isolation SPDT Switching (Operation Frequency: 2400 MHz; Return Loss: > 10 d B; Insertion Loss: < 3 dB; Isolation: > 20 dB) 

Design and Implementation of Attenuator 

• Experiment1: π-type Attenuator (OperationFrequency:2400 MHz; Return Loss: > 15 dB; Attenuation:> 20 ± 3 dB) 

• Experiment2: T-type Attenuator (Operation Frequency: 2400 MHz; Return Loss: > 15 dB; Attenuation: > 20 ± 3dB) 

• Experiment 3: Voltage-controlled -type Attenuator (Operation Frequency:2400 MHz; Return Loss: > 10 dB; Attenuation: > 30 ~ 10 ± 3 dB)

DESIGN AND IMPLEMENTATION OF WIKINSON POWER DIVIDER - CODE 170-002

Design and Implementation of Wilkinson Power Divider 

• Experiment 1: Single Stage Wilkinson Power Divider (Operation Frequency: 2400 MHz; Return Loss: > 25 ± 5 dB; Coupling: < - 3 ± 0.5 dB; Isolation: > 25 ± 5 dB; Phase difference: 0 ± 5 deg.) 

• Experiment 2: SIR Wilkinson Power Divider (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 0.5 dB; Isolation: > 15 ± 5 dB; Phase difference: 0 ± 5 deg.) 

• Experiment 3: Two Stages Wilkinson Power Divider (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 25 ± 5 dB; Phase difference: 0 ± 5 deg.) 

• Experiment 4: Unequal Power Wilkinson Power Divider (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB; Coupling: < -2 ± 0.5 dB; Isolation: >20 ± 5 dB; Phase difference: 0 ± 5 deg.)

DESIGN AND IMPLEMENTATION OF BRANCH LINE COUPLER- CODE 170-003

Design and Implementation of Branch line Coupler 

• Experiment 1: One Single Stage Branch Line Coupler (Operation Frequency: 2400 MHz; Return Loss: > 30 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 25 ± 5 dB; Phase difference: -270 ± 10 deg.) 

• Experiment 2: Size Reduced Branch Line Coupler (Operation Frequency: 2400 MHz; Return Loss: > 30 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 25 ± 5 dB; Phase difference: 75 ± 10 deg. 

• Experiment 3: Branch Line Coupler with Second Harmonic Suppression (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 35 ± 5 dB; Phase difference: -270 ± 10 deg.) 

• Experiment 4: Two Stages Branch Line Coupler (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 25 ± 5 dB; Phase difference: 90 ± 10 deg.)

DESIGN AND IMPLEMENTATION OF LANGE COUPLER-  CODE 170-004

Design and Implementation of Lange Coupler 

• Experiment 1: Unfolded Lange Coupler (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB Coupling: < -6 ± 0.5 dB; Isolation: > 30 ± 5 dB; Phase difference: -90 ± 10 deg.) 

• Experiment 2: Single Stage Lange Coupler (Operation Frequency: 2400 MHz; Return Loss: > 35 ± 5 dB; Coupling: < -6 ± 0.5 dB; Isolation: > 30 ± 5 dB; Phase difference: -90 ± 10 deg.) 

• Experiment 3: Two Stages Lange Coupler (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 25 ± 5 dB; Phase difference: -90 ± 10 deg.) 

• Experiment 4: Triple Coopered Lines Lange Coupler (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 30 ± 5 dB; Phase difference: -90 ± 10 deg.)

DESIGN AND IMPLEMENTATION OF RING COUPLER - CODE 170-005

Design and Implementation of Ring Coupler 

• Experiment 1: 180 deg. Ring Coupler (Operation Frequency: 2400 MHz; Return Loss: > 25 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 35 ± 5 dB; Phase difference: 0 ± 10 deg. / -180 ± 10 deg.) 

• Experiment 2: Wideband Ring Coupler (Operation Frequency: 2400 MHz; Return Loss: > 25 ± 5 dB; Coupling: < -3 ± 0.5 dB; Isolation: > 20 ± 5 dB; Phase difference: -10 ± 10 deg. / -190 ± 10 deg.) 

• Experiment 3: Size Reduced Ring Coupler (Operation Frequency: 2400 MHz; Return Loss: > 25 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 25 ± 5 dB; Phase difference: 0 ± 10 deg. / -180 ± 10 deg.) 

• Experiment 4: Miniaturized Ring Coupler (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 20 ± 5 dB; Phase difference: -3 ± 10 deg. / -175 ± 10 deg.)

DESIGN AND IMPLEMENTATION OF DIRECTIONAL COUPLER & BALUN - CODE 170-006

Design and Implementation of Directional Coupler 

• Experiment 1: Single Stage Directional Coupler (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB; Coupling: < - 10 ± 1 dB; Isolation: > 20 ± 5 dB; Phase difference: -90 ± 10 deg.) 

• Experiment 2: Multi-stages Directional Coupler (Operation Frequency: 2400 MHz; Return Loss: > 20 ± 5 dB; Coupling: < - 6 ± 1 dB; Isolation: > 20 ± 5 dB; Phase difference: 90 ± 10 deg.) Design and Implementation of Balun 

• Experiment 1: Novel Parallel Line Lange Balun (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 7 ± 5 dB; Phase difference: -180 ± 10 deg.) 

• Experiment 2: Multi-stage Coupled Line Balun (Operation Frequency: 2400 MHz; Return Loss: > 15 ± 5 dB; Coupling: < -3 ± 1 dB; Isolation: > 7 ± 5 dB; Phase difference: -180 ± 10 deg.)

DESIGN AND IMPLEMENTATION OF LOW-PASS FILTER - CODE 170-007

Design and Implementation of Low-pass Filter 

• Experiment 1: Stepped Impedance Low-pass Filter (f-3dB: 2.4 ± 0.1 GHz; Pass-band Width: > 2.4 ± GHz; -20 dB Bandstop: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB;Insertion Loss: < 0 dB ± 1dB) 

• Experiment 2: Compact Stepped Impedance Low-pass Filter (f-3dB: 2.4 ± 0.1 GHz; Pass-band Width: > 2.4 ± 0.1 GHz; -20 dB Stop-band: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 3: Branch Line Type Low-pass Filter (f-3dB: 2.4 ± 0.1 GHz; Pass-band Width: > 2.4 ± GHz; -20 dB Stop-band > 3 ± 0.5 GHz; Return Loss: > 15 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 4: Stepped Impedance Hairpin Low-pass Filter (f-3dB: 2.4 ± 0.1 GHz; Pass-band Width: > 2.4 ± 0.1 GHz; 20 dB Stop-band: > 2.5 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB)

DESIGN AND IMPLEMENTATION OF BRF AND BPF FILTERS - CODE 170-008

Design and Implementation of BRF and BPF Filters 

• Experiment 1: Open Stub Band-stop Filter (fc: 2.4 ± 0.1 GHz;-3 dB Stop-band Width: > 1 ± 0.5 GHz;-20 dB Stop-band Width: > 1 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 2: Compact Open Stub Band-stop Filter (fc: 2.4 ± 0.1 GHz;-3 dB Stop-band Width: > 1 ± 0.5 GHz;-20 dB Stopband Width: > 1 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 3: Parallel Coupled Line Band-pass Filter (fc: 2.4 ± 0.1 GHz; Pass-band Width: > 0.5 ± GHz; -20 dB Stop-band Width: > 2 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 3 dB ± 1dB) 

• Experiment 4: Wide Stop Band Band-pass Filter with Coupled Line and SIR Resonator (fc: 2.4 ± 0.1 GHz; Pass-band Width: > 1 ± 0.3 GHz;-20 dB Stop-band Width: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 3 dB ± 1dB)

PBG TYPE FILTER DESIGN - CODE 170-009

PBG Type Filter Design 

• Experiment 1: Conventional PBG Low-pass Filter (f-3dB: 1.6 ± 0.1 GHz; -20 dB Stop-band Width: > 1 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 3 dB ± 1dB) 

• Experiment 2: Chebyshev PBG Band-stop Filter (f-3dB: 2.4 ± 0.1 GHz; -3 dB Stop-band Width: > 1 ± 0.5 GHz; -20 dB Stopband Width: > 1 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 2 dB ± 1 dB)

GDS TYPE FILTER DESIGN - CODE 170-010

DGS Type Filter Design 

• Experiment 1: Low-pass Filter with Periodic DGS (f-3dB: 2.4 ± 0.1 GHz;-20 dB Stop-band Width: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 2: SIR Low-pass Filter with DGS (fc: 2.4 ± 0.1 GHz;-20 dB Stop-band Width: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 0 dB ± 1dB) 

• Experiment 3: Parallel Coupled Line Band-pass Filter with Harmonic Stop (fc: 2.4 ± 0.1 GHz; Pass-band Width: > 0.3 ± 0.2 GHz; -20 dB Stop-band Width: > 3 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 3 dB ± 1 dB) 

• Experiment 4: Open Stub Band-pass Filter using DGS Loaded (fc: 2.4 ± 0.1 GHz; Pass-band Width: > 0.4 ± 0.2 GHz; -20 dB Stop-band Width: > 1 ± 0.5 GHz; Return Loss: > 10 ± 5dB; Insertion Loss: < 3 dB ± 1 dB)

DC POWER SUPPLY & FUNCTION GNERATOR (OPTIONAL ITEM) - CODE 500-107

DC Power Supply 

• Triple Bipolar Voltage Outputs 

o DC 0 – +/-15V 

o DC +/-5V 

o DC +/-12V 

• Constant & variable Voltage Operation 

• Low Ripple and Noise

Function Generator 

• Two Signals Output Ports 

• Frequency Range: 

FG (I): 0 – 10Hz, 0 – 100kHz, 0 – 1kHz, 0 – 10kHz, 0 – 100kHz 

FG (II): 0 – 100Hz 0 – 1kHz 0 – 10kHz 0 – 100kHz 0 – 1MHz 

• Waveform: Sine, Triangle, Square, TTL Pulse 

• Amplitude: 10Vpp 

• Built-in-6-Digit Frequency Counter 

• Two Large 0.5” LED Display Overload Protection

Manuals: 

(1) All manuals are written in English 

(2) Model Answer 

(3) Teaching Manuals

OPTIONAL: 

DC Power Supply & Function Generator 

Model: GOTT-DC POWER SUPPLY & FUNCTION GENERATOR - CODE: 500-107

Details

Datasheet


DESCRIPTION 

• Design and implementation of switches and attenuators. 

• Design and implementation of Wilkinson power dividers, branch line couplers and Lange couplers. 

• Design and implementation of ring coupler, directional coupler and baluns. 

• Design and implementation of low -pass filter, band-stop filter and bandpass filter. 

• Design and implementation of PBG Filter and DGS type filter

FEATURES

• Training for wireless communication technicians and engineers. 

• To understand the applications and measurements of communication instrument and products. 

• Design and implementation ability training for microwave module circuit. 

• To understand the applications of micro-strip line in microwave circuits design.

• To shorten the gap between academic and industrial circles.


  • 质量承诺
  • 正品保修
  • 送货到家
  • 交易简单化

注册收新闻 - 获得优惠活动的机会